GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Protein domain ; Protein targeting ; Storage protein ; Xenopus oocytes (protein secretion) ; Zein ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to examine the role of cysteine (Cys)-rich domains in the accumulation of maize (Zea mays L.) γ-zein within the endoplasmic-reticulum-derived protein bodies, we studied the localization of γ-zein and of two truncated forms of γ-zein in Xenopus laevis oocytes. The two derivatives were constructed from a DNA encoding the γ-zein: one by deletion of the Pro-X linker region (21 amino acids) and the other by deletion of the Cys-rich domain (94 amino acids). In-vitro-synthesized transcripts were injected into oocytes and the distribution of the translation products was then analyzed. The entire γ-zein and both truncated forms of the γ-zein had accumulated efficiently in microsomes and no traces of secretion were observed. We suggest that neither C-terminal Cys-rich nor Pro-X domains are essential for γ-zein retention in oocyte vesicles. Therefore, structural features derived from disulphide bonds are not necessary for γ-zein targeting on the endoplasmic reticulum.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Key words:Arabidopsis (protein secretion) ; Lysine-rich γ-zein ; Prolamin (maize) ; Secretory pathway ; Transgenic Arabidopsis ; Zein targeting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. We have previously shown that the maize (Zea mays L.) storage prolamine γ-zein, accumulates in endoplasmic reticulum-derived protein bodies in transgenic plants of Arabidopsis thaliana (L.) ecotype R+P. The retention of γ-zein in the endoplasmic reticulum was found to be mediated by structural features contained in the polypeptide, an N-terminal proline-rich and a C-terminal cysteine-rich domain which were necessary for the correct retention and assembly of γ-zein within protein bodies (M.I. Geli et al., 1994, Plant Cell 6: 1911–1922). In the present work we incorporated in the γ-zein gene lysine-rich coding sequences which were positioned after the N-terminal proline-rich domain and at five amino-acid residues from the C-terminus. The targeting of lysine-rich γ-zeins was analyzed by expression of chimeric genes regulated by the cauliflower mosaic virus (CaMV) 35S promoter in transgenic Arabidopsis plants. The lysine-rich γ-zeins were detected by immunoblotting and we found that these proteins were modified post-translationally to reach their mature form. Subcellular fractionation and immunocytochemical studies demonstrated that glycosylated lysine-rich γ-zeins were secreted to the cell wall of transgenic Arabidopsis leaf cells.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: Arabidopsis thaliana ; genomic cloning ; glycine-rich ; proline-rich ; protein-membrane interaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The gene coding for a new class of proteins rich in glycine and proline (GPRP) was cloned in Arabidopsis thaliana. In the protein sequence, five amino acids-glycine, proline, alanine, tyrosine and histidine-account for 79.4% of the total composition. The protein has two different glycine-rich domains interrupted by a hydrophobic segment having a high probability of helix formation. The protein synthesized in vitro interacts with microsomes possibly through the hydrophobic domain. The gene in Arabidopsis has two introns, one in the coding region and the other one in the 5′ non-coding region. The later one is 778 bp long. Homologous sequences are found in carrot, tomato and tobacco. GPRP mRNA is found in the different organs of the plant analyzed except in mature seeds and anthers, and mostly in epidermal and vascular tissues. Possible hypotheses about the function of GPRP are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: endosperm-specific expression ; lysine-rich γ-zein ; maize endosperm transient transformation ; γ-zein gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During maize seed development, endosperm cells synthesize large amounts of storage proteins, α-, β, and γ-zeins, which accumulate within endoplasmic reticulum (ER)-derived protein bodies. The absence of lysine in all zein polypeptides results in an imbalance in the amino acid composition of maize seeds. We modified the maize γ-zein gene through the introduction of lysine-rich (Pro-Lys)n coding sequences at different sites of the γ-zein coding sequence. Maize endosperms were transiently transformed by biolistic bombardment with Lys-rich γ-zein constructs under the control of the 1.7 kb γ-zein seed-specific promoter and the cauliflower mosaic virus (CaMV) 35S promoter. When (Pro-Lys)n sequences were inserted contiguous to or in substitution of the Pro-Xaa region of the γ-zein, high levels of protein were observed. In contrast, when (Pro-Lys)n sequences were inserted five residues from the C-terminal, the transcript was present but modified protein was not detected. These results suggest that only an appropriate positioning of Lys-rich inserts leads to the modified molecule displaying correct folding and stability. Subcellular localization analyses and immunoelectron microscopy studies on isolated protein bodies demonstrated that modified γ-zeins accumulate within these organelles and co-localized with endogenous - and γ-zeins. The studies reported here show the feasibility of manipulating the γ-zein gene in order to obtain stable and correctly targeted Lys-rich zeins in maize seeds.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...