GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  EPIC3Earth and Planetary Science Letters, Elsevier, 464, pp. 95-102
    Publication Date: 2017-04-18
    Description: Recent large-scale remote sensing studies have shown that glacier mass loss in south-eastern Tibet, specifically in the eastern Nyainqêntanglha Range exceeds the average in High Asia. However, detailed studies at individual glaciers are scarce and the drivers behind the observed changes are poorly constrained to date. Employing feature tracking techniques on TerraSAR-X data for the periods 2008/2009, 2012/2013 and 2013/2014 we found measurable surface velocities through to the glacier terminus positions of five debris-covered glacier tongues. This is contrary to debris-covered glaciers in other parts of High Asia, where stagnant glacier tongues are common. Our feature tracking results for the 2013/2014 period suggest an average deceleration of 51% when compared with published Landsat velocities for the period 1999/2003. Further, we estimated surface elevation changes for the five glaciers from recently released one arc second resolution elevation data obtained during the Shuttle Radar Topography Mission in 2000 and an interferometrical derived TanDEM-X elevation model for the year 2014. With an average rate of −0.83 ± 0.57 m a^-1 we confirm strong surface lowering in the region, despite the widely discussed insulation effect of debris cover. Beside the influence of thermokarst processes and delayed response times of debris-covered glaciers, we highlight that abundant monsoonal summer rainfall might contribute significantly to the pronounced negative mass balances in the study region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-06
    Description: THESIS ABSTRACT
    Description: research
    Keywords: 551.7 ; tibet ; late holocene ; glacier fluctuation
    Language: English
    Type: article , Verlagsversion
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-19
    Description: Current model approaches used to simulate the degradation of permafrost under a warming climate are highly simplistic since they only consider one-dimensional (top-down) thawing and ignore lateral processes such as soil erosion and mass wasting which are the most abundant forms of thaw in many regions. Thus, current model assessments are most likely far too conservative in their estimates of permafrost thaw impacts (Rowland & Coon, 2015). It therefore remains uncertain how climate warming and permafrost thaw will affect (i) the intensity of erosion and mass wasting processes and (ii) essential ecosystem functions, landscape characteristics, and infrastructure. It also remains unclear (iii) whether any erosion-induced landscape changes further accelerate permafrost thaw. In order to answer these critical questions, land surface models (LSMs) require a new level of realism in order to adequately project permafrost thaw dynamics. Within the PermaRisk project, the permafrost model CryoGrid3 is extended with an erosion scheme that allows to represent lateral mass movement processes within the limited framework of one dimensional LSMs. The new model will be applied and validated at three Arctic sites in Alaska, Canada, and northern Siberia. Furthermore, 21st century climate impact projections for the key sites are scheduled as a basis for thorough risk analyses concerning potential damages to critical ecosystem functions/services and infrastructure. We will present first simulations on rapid permafrost degradation processes with a special focus on thaw slumps at a test site in northern Canada. We expect the results to demonstrate the capabilities and the limitations of the new model.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...