GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Microbiology 17 (2015): 1510–1519, doi:10.1111/1462-2920.12571.
    Description: Here we investigated whether there is evidence of local adaptation in strains of an ancestrally marine dinoflagellate to the lacustrine environment they now inhabit (optimal genotypes) and/or if they have evolved phenotypic plasticity (a range of phenotypes). Eleven strains of Polarella glacialis were isolated and cultured from three different environments: the polar seas, a hyposaline and a hypersaline Antarctic lake. Local adaptation was tested by comparing growth rates of lacustrine and marine strains at their own and reciprocal site conditions. To determine phenotypic plasticity, we measured the reaction norm for salinity. We found evidence of both, limited local adaptation and higher phenotypic plasticity in lacustrine strains when compared with marine ancestors. At extreme high salinities, local lake strains outperformed other strains, and at extreme low salinities, strains from the hyposaline lake outperformed all other strains. The data suggest that lake populations may have evolved higher phenotypic plasticity in the lake habitats compared with the sea, presumably due to the high temporal variability in salinity in the lacustrine systems. Moreover, the interval of salinity tolerance differed between strains from the hyposaline and hypersaline lakes, indicating local adaptation promoted by different salinity.
    Description: This work was supported by a grant from the Australian Antarctic Research Assessment Committee to J.L-P and KR and by The Swedish Research Council (621-2009-5324) to KR. RL has been financed by a Marie Curie Intra-European Fellowship (PIEF-GA-2009–235365, EU) and a Juan de la Cierva fellowship (JCI-2010–06594, Ministry of Science and Innovation, Spain).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-15
    Description: Organic nutrient loading in coastal waters has considerably increased due to anthropogenic activities over the last decades. In particular, the increase in the proportion of organic vs. inorganic nitrogen may have an impact on microbial plankton communities, particularly within the small size classes, where mixotrophy is likely to be widespread. Here we explore the change in taxonomic composition of small eukaryotes (〈20 μm) populating a productive coastal system in response to inorganic and/or organic nutrient amendments using 18S rRNA gene sequencing. Major changes in the community were observed in the mixed treatment, containing both inorganic and organic nutrients, which mostly affected phytoplankton taxa. Adding mixed nutrients had a positive effect on pigmented groups, when compared to additions of inorganic nutrients. The responding pigmented groups included dinoflagellates, cryptophyceans, chrysophyceans, bolidophyceans or dictyochophyceans, which comprise mixotrophic species, but also groups that are considered to be strictly autotrophs, such as diatoms or mamiellophyceans. Our results highlight the importance of organic nutrients for growth of small phytoplankton. The combination of both, autotrophic and heterotrophic capabilities, is possibly an advantage for small phytoplankton to thrive when inorganic nutrients or light are limiting or suboptimal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-10
    Description: Environmental molecular surveys targeting protist diversity have unveiled novel and uncultured lineages in a variety of ecosystems, ranging from completely new high-rank lineages, to new taxa moderately related to previously described organisms. The ecological roles of some of these novel taxa have been studied, showing that in certain habitats they may be responsible for critical environmental processes. Moreover, from an evolutionary perspective they still need to be included in a more accurate and wider understanding of the eukaryotic tree of life. These seminal discoveries promoted the development and use of a wide range of more in-depth culture-independent approaches to access this diversity, from metabarcoding and metagenomics to single cell genomics and FISH. Nonetheless, culturing using classical or innovative approaches is also essential to better characterize this new diversity. Ecologists and evolutionary biologists now face the challenge of apprehending the significance of this new diversity within the eukaryotic tree of life.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bergauer, Kristin; Fernandez-Guerra, Antonio; Garcia, Juan A L; Sprenger, Antoinette; Stepanauskas, Ramunas; Pachiadaki, Maria G; Jensen, Ole N; Herndl, Gerhard J (2018): Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proceedings of the National Academy of Sciences, 115(3), E400-E408, https://doi.org/10.1073/pnas.1708779115
    Publication Date: 2023-01-13
    Description: The phylogenetic composition of the heterotrophic microbial community is depth stratified in the oceanic water column down to abyssopelagic layers. In the layers below the euphotic zone, it has been suggested that heterotrophic microbes rely largely on solubilized particulate organic matter as a carbon and energy source rather than on dissolved organic matter. To decipher whether changes in the phylogenetic composition with depth are reflected in changes in the bacterial and archaeal transporter proteins, we generated an extensive metaproteomic and metagenomic dataset of microbial communities collected from 100- to 5,000-m depth in the Atlantic Ocean.
    Keywords: MALASPINA-2010; Malaspina circumnavigation expedition
    Type: Dataset
    Format: application/zip, 73.6 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-15
    Keywords: MALASPINA-2010; Malaspina circumnavigation expedition
    Type: Dataset
    Format: text/plain, 9.2 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-15
    Keywords: 29HE20101215; 29HE20110117; 29HE20110211; 29HE20110317; 29HE20110416; 29HE20110513; 29HE20110619; Arcocellulus spp.; Asterionellopsis glacialis; Asterolampra marylandica; Asterolampra sp.; Asteromphalus flabellatus; Asteromphalus heptactis; Asteromphalus hookeri; Asteromphalus hyalinus; Asteromphalus sp.; Asteromphalus spp.; Bacteriastrum elongatum; Bacteriastrum spp.; Bio-Rosette; BRO; Canarias Sea; Caribbean Sea; Cerataulina pelagica; Chaetoceros affinis; Chaetoceros atlanticus; Chaetoceros brevis; Chaetoceros dadayi; Chaetoceros decipiens; Chaetoceros didymus; Chaetoceros lorenzianus; Chaetoceros messanensis; Chaetoceros peruvianus; Chaetoceros sp.; Chaetoceros spp.; Climacodium frauenfeldianum; Corethron criophilum; Coscinodiscus spp.; Cylindrotheca closterium; Dactyliosolen fragilissimus; Dactyliosolen phuketensis; Date/Time of event; Depth, bottom/max; Depth, top/min; DEPTH, water; Diatoms, centrales; Diatoms, pennales; Eucampia zodiacus; Event label; Gossleriella tropica; Guinardia cylindrus; Guinardia striata; Haslea sp.; Hemiaulus hauckii; Hemiaulus membranaceus; Hemiaulus sinensis; Hemidiscus cuneiformis; Hespérides; Indian Ocean; Isthmia enervis; Latitude of event; Leptocylindrus danicus; Leptocylindrus mediterraneus; Lioloma spp.; Longitude of event; MALASPINA_LEG1; MALASPINA_LEG1_001-2-1; MALASPINA_LEG1_003-2; MALASPINA_LEG1_006-2; MALASPINA_LEG1_007-2; MALASPINA_LEG1_008-2; MALASPINA_LEG1_009-2; MALASPINA_LEG1_010-2; MALASPINA_LEG1_011-2; MALASPINA_LEG1_012-2; MALASPINA_LEG1_013-2; MALASPINA_LEG1_014-2; MALASPINA_LEG1_015-2; MALASPINA_LEG1_016-2; MALASPINA_LEG1_017-2; MALASPINA_LEG1_018-2; MALASPINA_LEG1_019-2; MALASPINA_LEG1_020-2; MALASPINA_LEG1_021-2; MALASPINA_LEG1_022-2; MALASPINA_LEG1_023-2; MALASPINA_LEG1_024-2; MALASPINA_LEG1_025-2; MALASPINA_LEG2; MALASPINA_LEG2_027-2; MALASPINA_LEG2_028-2; MALASPINA_LEG2_029-2; MALASPINA_LEG2_030-2; MALASPINA_LEG2_031-2; MALASPINA_LEG2_032-2; MALASPINA_LEG2_033-2; MALASPINA_LEG2_034-2; MALASPINA_LEG2_035-2; MALASPINA_LEG2_037-2; MALASPINA_LEG2_038-2; MALASPINA_LEG2_039-2; MALASPINA_LEG2_040-2; MALASPINA_LEG2_041-2; MALASPINA_LEG2_042-2; MALASPINA_LEG2_043-2; MALASPINA_LEG2_044-2; MALASPINA_LEG3; MALASPINA_LEG3_045-2; MALASPINA_LEG3_046-2; MALASPINA_LEG3_047-2; MALASPINA_LEG3_048-2; MALASPINA_LEG3_050-2; MALASPINA_LEG3_051-2; MALASPINA_LEG3_052-2; MALASPINA_LEG3_053-2; MALASPINA_LEG3_054-2; MALASPINA_LEG3_055-2; MALASPINA_LEG3_056-2; MALASPINA_LEG3_057-2; MALASPINA_LEG3_058-2; MALASPINA_LEG3_059-2; MALASPINA_LEG3_060-2; MALASPINA_LEG3_061-2; MALASPINA_LEG3_062-2; MALASPINA_LEG3_063-2; MALASPINA_LEG3_064-2; MALASPINA_LEG3_065-2; MALASPINA_LEG3_066-2; MALASPINA_LEG3_067-2; MALASPINA_LEG3_068-2; MALASPINA_LEG4; MALASPINA_LEG4_069-2; MALASPINA_LEG4_070-2; MALASPINA_LEG4_071-2; MALASPINA_LEG4_072-2; MALASPINA_LEG4_073-2; MALASPINA_LEG4_074-2; MALASPINA_LEG4_075-2; MALASPINA_LEG4_076-2; MALASPINA_LEG4_077-2; MALASPINA_LEG4_078-2; MALASPINA_LEG5; MALASPINA_LEG5_079-2; MALASPINA_LEG5_082-2; MALASPINA_LEG5_083-2; MALASPINA_LEG5_084-2; MALASPINA_LEG5_085-2; MALASPINA_LEG5_086-2; MALASPINA_LEG5_087-2; MALASPINA_LEG5_088-2; MALASPINA_LEG5_089-2; MALASPINA_LEG5_090-2; MALASPINA_LEG5_091-2; MALASPINA_LEG5_092-2; MALASPINA_LEG5_093-2; MALASPINA_LEG5_094-2; MALASPINA_LEG5_095-2; MALASPINA_LEG5_096-2; MALASPINA_LEG5_097-2; MALASPINA_LEG5_098-2; MALASPINA_LEG5_099-2; MALASPINA_LEG6; MALASPINA_LEG6_101-2; MALASPINA_LEG6_102-2; MALASPINA_LEG6_103-2; MALASPINA_LEG6_104-2; MALASPINA_LEG6_106-2; MALASPINA_LEG6_109-2; MALASPINA_LEG6_111-2; MALASPINA_LEG6_112-2; MALASPINA_LEG6_113-2; MALASPINA_LEG6_114-2; MALASPINA_LEG6_115-2; MALASPINA_LEG6_116-2; MALASPINA_LEG6_117-2; MALASPINA_LEG6_118-2; MALASPINA_LEG6_119-2; MALASPINA_LEG6_120-2; MALASPINA_LEG6_121-2; MALASPINA_LEG6_122-2; MALASPINA_LEG6_124-2; MALASPINA_LEG6_125-2; MALASPINA_LEG6_126-2; MALASPINA_LEG7; MALASPINA_LEG7_127-2; MALASPINA_LEG7_128-2; MALASPINA_LEG7_129-2; MALASPINA_LEG7_130-2; MALASPINA_LEG7_131-2; MALASPINA_LEG7_132-2; MALASPINA_LEG7_133-2; MALASPINA_LEG7_134-2; MALASPINA_LEG7_135-2; MALASPINA_LEG7_136-2; MALASPINA_LEG7_137-2; MALASPINA_LEG7_138-2; MALASPINA_LEG7_139-2; MALASPINA_LEG7_140-2; MALASPINA_LEG7_141-2; MALASPINA_LEG7_142-2; MALASPINA_LEG7_143-2; MALASPINA_LEG7_144-2; MALASPINA_LEG7_145-2; MALASPINA_LEG7_146-2; MALASPINA_LEG7_147-2; MALASPINA-2010; Malaspina circumnavigation expedition; MH002_001; MH005_003; MH008_006; MH009_007; MH010_008; MH011_009; MH012_010; MH013_011; MH014_012; MH015_013; MH016_014; MH017_015; MH018_016; MH019_017; MH020_018; MH021_019; MH022_020; MH023_021; MH024_022; MH025_023; MH026_024; MH027_025; MH036_027; MH037_028; MH038_029; MH039_030; MH040_031; MH041_032; MH042_033; MH043_034; MH044_035; MH046_037; MH047_038; MH048_039; MH049_040; MH050_041; MH051_042; MH052_043; MH053_044; MH061_045; MH062_046; MH063_047; MH064_048; MH066_050; MH067_051; MH072_052; MH073_053; MH074_054; MH075_055; MH076_056; MH077_057; MH078_058; MH079_059; MH080_060; MH081_061; MH082_062; MH083_063; MH084_064; MH086_066; MH087_067; MH095_069; MH096_070; MH097_071; MH098_072; MH099_073; MH100_074; MH101_075; MH103_077; MH104_078; MH124_080; MH126_082; MH127_083; MH128_084; MH129_085; MH130_086; MH131_087; MH132_088; MH133_089; MH134_090; MH135_091; MH136_092; MH137_093; MH138_094; MH139_095; MH140_096; MH141_097; MH142_098; MH143_099; MH150_101; MH151_102; MH152_103; MH153_104; MH155_106; MH158_109; MH160_111; MH161_112; MH162_113; MH163_114; MH164_115; MH165_116; MH166_117; MH167_118; MH169_120; MH170_121; MH171_122; MH173_124; MH174_125; MH175_126; MH188_127; MH189_128; MH190_129; MH191_130; MH193_131; MH194_132; MH195_133; MH196_134; MH197_135; MH198_136; MH199_137; MH200_138; MH201_139; MH202_140; MH203_141; MH204_142; MH205_143; MH206_144; MH207_145; MH208_146; MH209_147; North Pacific Ocean; Planktoniella sol; Pleurosigma spp.; Proboscia alata; Proboscia eumorpha; Pseudo-nitzschia spp.; Pseudosolenia calcar-avis; Rhizosolenia hebetata; Rhizosolenia robusta; Rhizosolenia simplex; Rhizosolenia sp.; Rhizosolenia spp.; Roperia tesselata; Skeletonema sp.; South Atlantic Ocean; South Pacific Ocean; Station label; Stephanopyxis turris; Tasman Sea; Thalassionema nitzschioides; Thalassionema spp.; Thalassiosira sp.; Thalassiosira spp.
    Type: Dataset
    Format: text/tab-separated-values, 9443 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-15
    Keywords: 29HE20101215; 29HE20110117; 29HE20110211; 29HE20110317; 29HE20110416; 29HE20110513; 29HE20110619; Bio-Rosette; BRO; Canarias Sea; Caribbean Sea; Date/Time of event; DEPTH, water; Event label; Hespérides; Indian Ocean; Latitude of event; Longitude of event; MALASPINA_LEG1; MALASPINA_LEG1_001-2-1; MALASPINA_LEG1_001-2-2; MALASPINA_LEG1_003-2; MALASPINA_LEG1_004-2; MALASPINA_LEG1_007-2; MALASPINA_LEG1_009-2; MALASPINA_LEG1_010-2; MALASPINA_LEG1_012-2; MALASPINA_LEG1_013-2; MALASPINA_LEG1_014-2; MALASPINA_LEG1_015-2; MALASPINA_LEG1_017-2; MALASPINA_LEG1_018-2; MALASPINA_LEG1_019-2; MALASPINA_LEG1_022-2; MALASPINA_LEG1_023-2; MALASPINA_LEG1_024-2; MALASPINA_LEG1_025-2; MALASPINA_LEG1_026-2; MALASPINA_LEG2; MALASPINA_LEG2_027-2; MALASPINA_LEG2_029-2; MALASPINA_LEG2_030-2; MALASPINA_LEG2_032-2; MALASPINA_LEG2_033-2; MALASPINA_LEG2_034-2; MALASPINA_LEG2_035-2; MALASPINA_LEG2_037-2; MALASPINA_LEG2_038-2; MALASPINA_LEG2_039-2; MALASPINA_LEG2_040-2; MALASPINA_LEG2_041-2; MALASPINA_LEG2_043-2; MALASPINA_LEG2_044-2; MALASPINA_LEG3; MALASPINA_LEG3_045-2; MALASPINA_LEG3_046-2; MALASPINA_LEG3_047-2; MALASPINA_LEG3_049-2; MALASPINA_LEG3_050-2; MALASPINA_LEG3_051-2; MALASPINA_LEG3_052-2; MALASPINA_LEG3_053-2; MALASPINA_LEG3_054-2; MALASPINA_LEG3_055-2; MALASPINA_LEG3_056-2; MALASPINA_LEG3_057-2; MALASPINA_LEG3_058-2; MALASPINA_LEG3_059-2; MALASPINA_LEG3_060-2; MALASPINA_LEG3_062-2; MALASPINA_LEG3_063-2; MALASPINA_LEG3_064-2; MALASPINA_LEG3_065-2; MALASPINA_LEG3_066-2; MALASPINA_LEG3_067-2; MALASPINA_LEG3_068-2; MALASPINA_LEG4; MALASPINA_LEG4_069-2; MALASPINA_LEG4_070-2; MALASPINA_LEG4_071-2; MALASPINA_LEG4_072-2; MALASPINA_LEG4_073-2; MALASPINA_LEG4_074-2; MALASPINA_LEG4_075-2; MALASPINA_LEG4_076-2; MALASPINA_LEG4_077-2; MALASPINA_LEG4_078-2; MALASPINA_LEG5; MALASPINA_LEG5_079-2; MALASPINA_LEG5_081-2; MALASPINA_LEG5_082-2; MALASPINA_LEG5_083-2; MALASPINA_LEG5_085-2; MALASPINA_LEG5_086-2; MALASPINA_LEG5_087-2; MALASPINA_LEG5_088-2; MALASPINA_LEG5_089-2; MALASPINA_LEG5_092-2; MALASPINA_LEG5_093-2; MALASPINA_LEG5_094-2; MALASPINA_LEG5_095-2; MALASPINA_LEG5_096-2; MALASPINA_LEG5_097-2; MALASPINA_LEG5_098-2; MALASPINA_LEG6; MALASPINA_LEG6_101-2; MALASPINA_LEG6_102-2; MALASPINA_LEG6_103-2; MALASPINA_LEG6_104-2; MALASPINA_LEG6_106-2; MALASPINA_LEG6_107-2; MALASPINA_LEG6_108-2; MALASPINA_LEG6_109-2; MALASPINA_LEG6_110-2; MALASPINA_LEG6_112-2; MALASPINA_LEG6_114-2; MALASPINA_LEG6_115-2; MALASPINA_LEG6_116-2; MALASPINA_LEG6_118-2; MALASPINA_LEG6_119-2; MALASPINA_LEG6_120-2; MALASPINA_LEG6_121-2; MALASPINA_LEG6_122-2; MALASPINA_LEG6_124-2; MALASPINA_LEG6_125-2; MALASPINA_LEG6_126-2; MALASPINA_LEG7; MALASPINA_LEG7_127-2; MALASPINA_LEG7_128-2; MALASPINA_LEG7_129-2; MALASPINA_LEG7_130-2; MALASPINA_LEG7_131-2; MALASPINA_LEG7_132-2; MALASPINA_LEG7_133-2; MALASPINA_LEG7_134-2; MALASPINA_LEG7_135-2; MALASPINA_LEG7_137-2; MALASPINA_LEG7_138-2; MALASPINA_LEG7_139-2; MALASPINA_LEG7_140-2; MALASPINA_LEG7_141-2; MALASPINA_LEG7_143-2; MALASPINA_LEG7_144-2; MALASPINA_LEG7_145-2; MALASPINA_LEG7_146-2; MALASPINA-2010; Malaspina circumnavigation expedition; MH002_001; MH003_002; MH005_003; MH006_004; MH009_007; MH011_009; MH012_010; MH014_012; MH015_013; MH016_014; MH017_015; MH019_017; MH020_018; MH021_019; MH024_022; MH025_023; MH026_024; MH027_025; MH028_026; MH036_027; MH038_029; MH039_030; MH041_032; MH042_033; MH043_034; MH044_035; MH046_037; MH047_038; MH048_039; MH049_040; MH050_041; MH052_043; MH053_044; MH061_045; MH062_046; MH063_047; MH065_049; MH066_050; MH067_051; MH072_052; MH073_053; MH074_054; MH075_055; MH076_056; MH077_057; MH078_058; MH079_059; MH080_060; MH082_062; MH083_063; MH084_064; MH086_066; MH087_067; MH095_069; MH096_070; MH097_071; MH098_072; MH099_073; MH100_074; MH101_075; MH103_077; MH104_078; MH124_080; MH125_081; MH126_082; MH127_083; MH129_085; MH130_086; MH131_087; MH132_088; MH133_089; MH136_092; MH137_093; MH138_094; MH139_095; MH140_096; MH141_097; MH142_098; MH150_101; MH151_102; MH152_103; MH153_104; MH155_106; MH156_107; MH157_108; MH158_109; MH159_110; MH161_112; MH163_114; MH164_115; MH165_116; MH167_118; MH169_120; MH170_121; MH171_122; MH173_124; MH174_125; MH175_126; MH188_127; MH189_128; MH190_129; MH191_130; MH193_131; MH194_132; MH195_133; MH196_134; MH197_135; MH199_137; MH200_138; MH201_139; MH202_140; MH203_141; MH205_143; MH206_144; MH207_145; MH208_146; North Pacific Ocean; Operational taxonomic unit; South Atlantic Ocean; South Pacific Ocean; Station label; Tasman Sea
    Type: Dataset
    Format: text/tab-separated-values, 146280 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-15
    Keywords: 29HE20101215; 29HE20110117; 29HE20110211; 29HE20110317; 29HE20110416; 29HE20110513; 29HE20110619; Bio-Rosette; BRO; Canarias Sea; Caribbean Sea; Centrobranchus choerocephalus; Centrobranchus nigroocellatus; Date/Time of event; DEPTH, water; Event label; Gonichthys coccoi; Gonichthys tenuiculus; Gorgasia barnesi; Hespérides; Indian Ocean; Latitude of event; Longitude of event; MALASPINA_LEG1; MALASPINA_LEG1_007-2; MALASPINA_LEG1_010-2; MALASPINA_LEG1_011-2; MALASPINA_LEG1_012-2; MALASPINA_LEG1_013-2; MALASPINA_LEG1_015-2; MALASPINA_LEG1_016-2; MALASPINA_LEG1_017-2; MALASPINA_LEG1_018-2; MALASPINA_LEG1_020-2; MALASPINA_LEG1_021-2; MALASPINA_LEG1_022-2; MALASPINA_LEG1_023-2; MALASPINA_LEG1_024-2; MALASPINA_LEG1_026-2; MALASPINA_LEG2; MALASPINA_LEG2_027-2; MALASPINA_LEG2_028-2; MALASPINA_LEG2_029-2; MALASPINA_LEG2_030-2; MALASPINA_LEG2_031-2; MALASPINA_LEG2_034-2; MALASPINA_LEG2_036-2; MALASPINA_LEG2_038-2; MALASPINA_LEG2_041-2; MALASPINA_LEG2_043-2; MALASPINA_LEG2_044-2; MALASPINA_LEG3; MALASPINA_LEG3_045-2; MALASPINA_LEG3_046-2; MALASPINA_LEG3_047-2; MALASPINA_LEG3_049-2; MALASPINA_LEG3_050-2; MALASPINA_LEG3_053-2; MALASPINA_LEG3_054-2; MALASPINA_LEG3_055-2; MALASPINA_LEG3_056-2; MALASPINA_LEG3_057-2; MALASPINA_LEG3_058-2; MALASPINA_LEG3_060-2; MALASPINA_LEG3_061-2; MALASPINA_LEG3_063-2; MALASPINA_LEG3_064-2; MALASPINA_LEG3_065-2; MALASPINA_LEG3_067-2; MALASPINA_LEG3_068-2; MALASPINA_LEG4; MALASPINA_LEG4_069-2; MALASPINA_LEG4_070-2; MALASPINA_LEG4_071-2; MALASPINA_LEG4_077-2; MALASPINA_LEG4_078-2; MALASPINA_LEG5; MALASPINA_LEG5_081-2; MALASPINA_LEG5_083-2; MALASPINA_LEG5_084-2; MALASPINA_LEG5_087-2; MALASPINA_LEG5_088-2; MALASPINA_LEG5_091-2; MALASPINA_LEG5_092-2; MALASPINA_LEG5_093-2; MALASPINA_LEG5_094-2; MALASPINA_LEG5_095-2; MALASPINA_LEG5_096-2; MALASPINA_LEG5_097-2; MALASPINA_LEG5_098-2; MALASPINA_LEG6; MALASPINA_LEG6_101-2; MALASPINA_LEG6_102-2; MALASPINA_LEG6_103-2; MALASPINA_LEG6_108-2; MALASPINA_LEG6_111-2; MALASPINA_LEG6_113-2; MALASPINA_LEG6_116-2; MALASPINA_LEG6_117-2; MALASPINA_LEG6_118-2; MALASPINA_LEG6_119-2; MALASPINA_LEG6_121-2; MALASPINA_LEG6_123-2; MALASPINA_LEG6_124-2; MALASPINA_LEG6_125-2; MALASPINA_LEG6_126-2; MALASPINA_LEG7; MALASPINA_LEG7_129-2; MALASPINA_LEG7_130-2; MALASPINA_LEG7_132-2; MALASPINA_LEG7_133-2; MALASPINA_LEG7_134-2; MALASPINA_LEG7_135-2; MALASPINA_LEG7_136-2; MALASPINA_LEG7_137-2; MALASPINA_LEG7_138-2; MALASPINA_LEG7_139-2; MALASPINA_LEG7_140-2; MALASPINA_LEG7_141-2; MALASPINA_LEG7_142-2; MALASPINA_LEG7_143-2; MALASPINA_LEG7_144-2; MALASPINA_LEG7_145-2; MALASPINA_LEG7_146-2; MALASPINA_LEG7_147-2; MALASPINA-2010; Malaspina circumnavigation expedition; Melandrium affine; MH009_007; MH012_010; MH013_011; MH014_012; MH015_013; MH017_015; MH018_016; MH019_017; MH020_018; MH022_020; MH023_021; MH024_022; MH025_023; MH026_024; MH028_026; MH036_027; MH037_028; MH038_029; MH039_030; MH040_031; MH043_034; MH045_036; MH047_038; MH050_041; MH052_043; MH053_044; MH061_045; MH062_046; MH063_047; MH065_049; MH066_050; MH073_053; MH074_054; MH075_055; MH076_056; MH077_057; MH078_058; MH080_060; MH081_061; MH083_063; MH084_064; MH086_066; MH087_067; MH095_069; MH096_070; MH103_077; MH104_078; MH125_081; MH127_083; MH128_084; MH131_087; MH132_088; MH135_091; MH136_092; MH137_093; MH138_094; MH139_095; MH140_096; MH141_097; MH142_098; MH150_101; MH151_102; MH152_103; MH157_108; MH160_111; MH162_113; MH165_116; MH166_117; MH167_118; MH170_121; MH172_123; MH173_124; MH174_125; MH175_126; MH190_129; MH191_130; MH194_132; MH195_133; MH196_134; MH197_135; MH198_136; MH199_137; MH200_138; MH201_139; MH202_140; MH203_141; MH204_142; MH205_143; MH206_144; MH207_145; MH208_146; MH209_147; Microdinium spinosum; Myctophum asperum; Myctophum aurolaternatum; Myctophum nitidulum; Myctophum phengodes; North Pacific Ocean; South Atlantic Ocean; South Pacific Ocean; Station label; Synodus evermanni; Tasman Sea
    Type: Dataset
    Format: text/tab-separated-values, 1235 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Villarino, Ernesto; Watson, James R; Jönsson, Bror; Gasol, Josep M; Salazar, Guillem; Acinas, Silvia G; Estrada, Marta; Massana, Ramón; Logares, Ramiro; Giner, Caterina R; Pernice, Massimo C; Olivar, M Pilar; Citores, Leire; Corell, Jon; Rodríguez-Ezpeleta, Naiara; Acuña, José Luis; Molina-Ramírez, Axayacatl; González-Gordillo, Juan Ignacio; Cózar, Andrés; Martí, Elisa; Cuesta, José A; Agustí, Susana; Fraile-Nuez, Eugenio; Duarte, Carlos Manuel; Irigoien, Xabier; Chust, Guillem (2018): Large-scale ocean connectivity and planktonic body size. Nature Communications, 9(1), https://doi.org/10.1038/s41467-017-02535-8
    Publication Date: 2024-02-15
    Description: Global patterns of planktonic diversity are mainly determined by the dispersal of propagules with ocean currents. However, the role that abundance and body size plays in determining spatial patterns of diversity remains unclear. Here, we analyze spatial community structure - beta-diversity - for several planktonic and nektonic organisms spanning from prokaryotes to small mesopelagic fishes collected during the Malaspina 2010 Expedition. beta-diversity were compared to surface ocean transit times derived from a global circulation model, revealing a significant negative relationship that is stronger than environmental differences. Estimated dispersal scales for different groups show a negative correlation with body-size, where less abundant large-bodied communities have significantly shorter dispersal scales and larger spatial species-turnover rates than more abundant small-bodied plankton. Our results confirm that the dispersal scale of planktonic and micro-nektonic organisms is determined by local abundance, which scales with body size, ultimately setting global spatial patterns of diversity.
    Keywords: MALASPINA-2010; Malaspina circumnavigation expedition
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-15
    Keywords: 29HE20101215; 29HE20110117; 29HE20110211; 29HE20110317; 29HE20110513; 29HE20110619; Achelous sp.; Antipodarctus aoteanus; Arenaeus mexicanus; Ashtoret lunaris; Bio-Rosette; BRO; Callapa gallus; Callinectes arcuatus; Canarias Sea; Caribbean Sea; Charybdis helleri; Charybdis japonica; Date/Time of event; DEPTH, water; Dromia dehaani; Etisus odhneri; Etisus splendidus; Event label; Gaillardiellus orientalis; Gaillardiellus sp.; Glaucus atlanticus; Glaucus marginatus; Glaucus sp.; Glaucus thompsoni; Goniopsis pulchra; Grapsus grapsus; Halobates; Hepatus epheliticus; Hespérides; Heterocrypta occidentalis; Indian Ocean; Latitude of event; Leptograpsus variegatus; Liomera cinctimanus; Lissocarcinus orbicularis; Longitude of event; Lophozozymus pulchellus; MALASPINA_LEG1; MALASPINA_LEG1_003-2; MALASPINA_LEG1_006-2; MALASPINA_LEG1_008-2; MALASPINA_LEG1_011-2; MALASPINA_LEG1_014-2; MALASPINA_LEG1_017-2; MALASPINA_LEG1_023-2; MALASPINA_LEG2; MALASPINA_LEG2_027-2; MALASPINA_LEG2_028-2; MALASPINA_LEG2_033-2; MALASPINA_LEG2_034-2; MALASPINA_LEG2_035-2; MALASPINA_LEG2_041-2; MALASPINA_LEG2_043-2; MALASPINA_LEG2_044-2; MALASPINA_LEG3; MALASPINA_LEG3_045-2; MALASPINA_LEG3_046-2; MALASPINA_LEG3_047-2; MALASPINA_LEG3_048-2; MALASPINA_LEG3_050-2; MALASPINA_LEG3_051-2; MALASPINA_LEG3_053-2; MALASPINA_LEG3_055-2; MALASPINA_LEG3_058-2; MALASPINA_LEG3_059-2; MALASPINA_LEG3_060-2; MALASPINA_LEG3_063-2; MALASPINA_LEG3_064-2; MALASPINA_LEG3_065-2; MALASPINA_LEG3_067-2; MALASPINA_LEG4; MALASPINA_LEG4_070-2; MALASPINA_LEG4_076-2; MALASPINA_LEG4_077-2; MALASPINA_LEG6; MALASPINA_LEG6_101-2; MALASPINA_LEG6_102-2; MALASPINA_LEG6_103-2; MALASPINA_LEG6_106-2; MALASPINA_LEG6_107-2; MALASPINA_LEG6_109-2; MALASPINA_LEG6_111-2; MALASPINA_LEG6_112-2; MALASPINA_LEG6_113-2; MALASPINA_LEG6_114-2; MALASPINA_LEG6_115-2; MALASPINA_LEG6_116-2; MALASPINA_LEG6_117-2; MALASPINA_LEG6_118-2; MALASPINA_LEG6_119-2; MALASPINA_LEG6_120-2; MALASPINA_LEG6_121-2; MALASPINA_LEG6_122-2; MALASPINA_LEG6_124-2; MALASPINA_LEG6_125-2; MALASPINA_LEG6_126-2; MALASPINA_LEG7; MALASPINA_LEG7_130-2; MALASPINA_LEG7_131-2; MALASPINA_LEG7_132-2; MALASPINA_LEG7_133-2; MALASPINA_LEG7_134-2; MALASPINA_LEG7_136-2; MALASPINA_LEG7_137-2; MALASPINA_LEG7_139-2; MALASPINA_LEG7_143-2; MALASPINA_LEG7_146-2; MALASPINA_LEG7_147-2; MALASPINA-2010; Malaspina circumnavigation expedition; MH005_003; MH008_006; MH010_008; MH013_011; MH016_014; MH019_017; MH025_023; MH036_027; MH037_028; MH042_033; MH043_034; MH044_035; MH050_041; MH052_043; MH053_044; MH061_045; MH062_046; MH063_047; MH064_048; MH066_050; MH067_051; MH073_053; MH075_055; MH078_058; MH079_059; MH080_060; MH083_063; MH084_064; MH086_066; MH095_069; MH101_075; MH103_077; MH150_101; MH151_102; MH152_103; MH155_106; MH156_107; MH158_109; MH160_111; MH161_112; MH162_113; MH163_114; MH164_115; MH165_116; MH166_117; MH167_118; MH169_120; MH170_121; MH171_122; MH173_124; MH174_125; MH175_126; MH191_130; MH193_131; MH194_132; MH195_133; MH196_134; MH198_136; MH199_137; MH201_139; MH205_143; MH208_146; MH209_147; Micropanope nuttingi; Myra sp.; Neoliomera cerasinus; North Pacific Ocean; Pachygrapsus socius; Panulirus cygnus; Panulirus echinatus; Panulirus gracilis; Panulirus homarus; Panulirus ornatus; Panulirus penicillatus; Planes minutus; Portunido; Portunus trituberculatus; South Atlantic Ocean; Station label; Tasman Sea; Thalamita; Thalamita admete; Thalamita crenata; Thalamita sp.; Uca (Minuca) vocator; Williamstimposonia stimpsoni
    Type: Dataset
    Format: text/tab-separated-values, 3055 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...