GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Diagnostic morphological characteristics of copepods of the genus Calanus are restricted largely to minor variations in secondary sex characteristics. This presents a persistent problem in the identification of individuals to species level, especially for immature stages. We have developed a simple molecular technique to distinguish between the North Atlantic Calanus species (C. helgolandicus, C. finmarchicus, C. glacialis and C. hyperboreus) at any life stage. Using the polymerase chain-reaction (PCR), the mitochodrial large subunit (16S) ribosomal RNA (rRNA) gene was amplified from individual copepods preserved in ethanol. Subsequent digestion of the amplified products with the restriction enzymes DdeI and VspI, followed by electrophoretic separation in 2% agarose (Metaphor, FMC Ltd), produced a characteristic pattern for each species. The versatility of the method is demonstrated by the unambiguous identification to species of any life stage, from egg to adult, and of individual body parts.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-20
    Description: Analysis of the demographic structure of Calanus species in the North Atlantic presents particular difficulties due to the overlapping spatial distributions of four main congeneric species (Calanus finmarchicus, Calanus helgolandicus, Calanus glacialis and Calanus hyperboreus). These species have similar morphologies, making microscopic discrimination only possible between some of the species at late copepodite or adult stages. However, molecular techniques now offer the possibility of screening significant numbers of specimens and unambiguously identifying them to species, regardless of developmental stage. Unfortunately, the processing rate of specimens by molecular methods is still too low to offer a realistic alternative to microscopy for analysis of samples from large field surveys. Here, we outline and test an approach involving the use of molecular methodology in conjunction with conventional microscopy to assess the species assignment of developmental stage abundances of Calanus congeners. Our study has highlighted many important methodological issues. First, it cannot be assumed that the species composition is homogeneous across the development stages; applying proportional species composition of adults to morphologically undistinguishable earlier development stages can result in error. The second important conclusion is that prosome length may be a highly unreliable discriminator of C. finmarchicus and C. glacialis
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-20
    Description: Analysis of the demographic structure of Calanus species in the North Atlantic presents particular difficulties due to the overlapping spatial distributions of four main congeneric species (Calanus finmarchicus, Calanus helgolandicus, Calanus glacialis and Calanus hyperboreus). These species have similar morphologies, making microscopic discrimination only possible between some of the species at late copepodite or adult stages. However, molecular techniques now offer the possibility of screening significant numbers of specimens and unambiguously identifying them to species, regardless of developmental stage. Unfortunately, the processing rate of specimens by molecular methods is still too low to offer a realistic alternative to microscopy for analysis of samples from large field surveys. Here, we outline and test an approach involving the use of molecular methodology in conjunction with conventional microscopy to assess the species assignment of developmental stage abundances of Calanus congeners. Our study has highlighted many important methodological issues. First, it cannot be assumed that the species composition is homogeneous across the development stages; applying proportional species composition of adults to morphologically undistinguishable earlier development stages can result in error. The second important conclusion is that prosome length may be a highly unreliable discriminator of C. finmarchicus and C. glacialis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-04
    Description: Metabarcoding (large-scale taxonomic identification of complex samples via analysis of one or few orthologous DNA regions, called barcodes) is revolutionizing analysis of biodiversity of marine zooplankton assemblages. Metabarcoding relies on high-throughput DNA sequencing (HTS) technologies, which yield millions of DNA sequences in parallel and allow large-scale analysis of environmental samples. Metabarcoding studies of marine zooplankton have used various regions of nuclear small- (18S) and large-subunit (28S) rRNA, which allow accurate classification of novel sequences and reliable amplification with consensus primers, but- due to their relatively conserved nature- may underestimate species diversity in a community. To discriminate species, more variable genes are needed. A limited number of metabarcoding studies have used mitochondrial cytochrome oxidase I (COI), which ensures detection of species-level diversity, but may require group-specific primers and thus result in inconsistent amplification success rates. Reference databases with sequences for accurately-identified species are critically needed to allow taxonomic designation of molecular operational taxonomic units (MOTU) and comparison with previous studies of zooplankton diversity. Potential and promising applications of metabarcoding include rapid detection of impacts of climate change, monitoring and assessment of ecosystem health, calculation of biotic indices, characterization of food webs and detection of introduced, non-indigenous species.
    Print ISSN: 0142-7873
    Electronic ISSN: 1464-3774
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-23
    Description: Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including exposure to marine plastic pollution. Here, we review the evidence for the effects of plastic debris on turtles and their habitats, highlight knowledge gaps, and make recommendations for future research. We found that, of the seven species, all are known to ingest or become entangled in marine debris. Ingestion can cause intestinal blockage and internal injury, dietary dilution, malnutrition, and increased buoyancy which in turn can result in poor health, reduced growth rates and reproductive output, or death. Entanglement in plastic debris (including ghost fishing gear) is known to cause lacerations, increased drag—which reduces the ability to forage effectively or escape threats—and may lead to drowning or death by starvation. In addition, plastic pollution may impact key turtle habitats. In particular, its presence on nesting beaches may alter nest properties by affecting temperature and sediment permeability. This could influence hatchling sex ratios and reproductive success, resulting in population level implications. Additionally, beach litter may entangle nesting females or emerging hatchlings. Lastly, as an omnipresent and widespread pollutant, plastic debris may cause wider ecosystem effects which result in loss of productivity and implications for trophic interactions. By compiling and presenting this evidence, we demonstrate that urgent action is required to better understand this issue and its effects on marine turtles, so that appropriate and effective mitigation policies can be developed.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...