GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 8192-8194 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Infrared photoluminescence has been used to study the band-gap energy of InAs1−xSbx digital superlattices and band alignment of InAs1−xSbx/AlSb quantum wells at 5 K. It is found that the InAs1−xSbx digital alloys have a smaller effective band gap than InAs1−xSbx random alloys. In addition, the valence band offset between type-II InAs/AlSb is determined to be 130 meV. This number reduces as the Sb mole fraction in InAs1−xSbx is increased, and the alignment between InAs1−xSbx/AlSb becomes type I when x〉0.15. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 4319-4323 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Tight-binding calculations of electronic structures for (001)-(InAs)n(InSb)m strained layer superlattices are presented. The dependences of the superlattice band gap on the band offsets between InAs and InSb are examined for three different types of biaxial strains. It is found that the band gap depends strongly on the band offset, and that for m=1 the ordering lowers the band gap with respect to the random alloy. A comparison with the photoluminescence data for the energy gaps of (n×1) strained-layer superlattices is discussed. In addition, the electronic structures of strained InAs quantum wells are calculated, and interpretations are provided for the observed type-I to type-II band alignment transition at n=5 in a quantum well formed by (n×1) strained layer superlattices and AlSb barriers. Changes of energy gaps with layer thicknesses in strained layer superlattices with n=m and n=8−m are also studied. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...