GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-06
    Description: The serine/threonine kinase tumor progression locus 2 (Tpl2, also known as Map3k8/Cot) is a potent inflammatory mediator that drives the production of TNFα, IL-1β, and IFNγ. We previously demonstrated that Tpl2 regulates T cell receptor (TCR) signaling and modulates T helper cell differentiation. However, very little is known about how Tpl2 modulates the development of regulatory T cells (Tregs). Tregs are a specialized subset of T cells that express FoxP3 and possess immunosuppressive properties to limit excess inflammation. Because of the documented role of Tpl2 in promoting inflammation, we hypothesized that Tpl2 antagonizes Treg development and immunosuppressive function. Here we demonstrate that Tpl2 constrains the development of inducible Tregs. Tpl2−/− naïve CD4+ T cells preferentially develop into FoxP3+ inducible Tregs in vitro as well as in vivo in a murine model of ovalbumin (OVA)-induced systemic tolerance. Treg biasing of Tpl2−/− T cells depended on TCR signal strength and corresponded with reduced activation of the mammalian target of rapamycin (mTOR) pathway. Importantly, Tpl2−/− Tregs have basally increased expression of FoxP3 and immunosuppressive molecules, IL-10 and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Furthermore, they were more immunosuppressive in vivo in a T cell transfer model of colitis, as evidenced by reduced effector T cell accumulation, systemic production of inflammatory cytokines, and colonic inflammation. These results demonstrate that Tpl2 promotes inflammation in part by constraining FoxP3 expression and Treg immunosuppressive functions. Overall, these findings suggest that Tpl2 inhibition could be used to preferentially drive Treg induction and thereby limit inflammation in a variety of autoimmune diseases.
    Print ISSN: 0021-9258
    Electronic ISSN: 1083-351X
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...