GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 64 (1994), S. 1941-1943 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Diamond films on surfaces of cubic boron nitride substrate grown by microwave plasma chemical vapor deposition are investigated. Deposited films are characterized by scanning electron microscopy, reflection high-energy electron diffraction, and micro-Raman spectroscopy. We found a new stacking growth mode of the epitaxial diamond films which is distinguished from the previous observed modes. The morphologies of diamond (100) facets formed on the {221} and {100} surfaces of cubic boron nitride are steps and/or stages, respectively. This is beneficial to growing a fair perfect single-crystal films of diamond.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-03
    Description: While a mutation in C9ORF72 is the most common genetic contributor to amyotrophic lateral sclerosis (ALS), much remains to be learned concerning the function of the protein normally encoded at this locus. To elaborate further on functions for C9ORF72, we used quantitative mass spectrometry-based proteomics to identify interacting proteins in motor neurons and found that its long isoform complexes with and stabilizes SMCR8, which further enables interaction with WDR41. To study the organismal and cellular functions for this tripartite complex, we generated Smcr8 loss-of-function mutant mice and found that they developed phenotypes also observed in C9orf72 loss-of-function animals, including autoimmunity. Along with a loss of tolerance for many nervous system autoantigens, we found increased lysosomal exocytosis in Smcr8 mutant macrophages. In addition to elevated surface Lamp1 (lysosome-associated membrane protein 1) expression, we also observed enhanced secretion of lysosomal components—phenotypes that we subsequently observed in C9orf72 loss-of-function macrophages. Overall, our findings demonstrate that C9ORF72 and SMCR8 have interdependent functions in suppressing autoimmunity as well as negatively regulating lysosomal exocytosis—processes of potential importance to ALS.
    Print ISSN: 0890-9369
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-15
    Description: Motivation: Protein–DNA interactions often take part in various crucial processes, which are essential for cellular function. The identification of DNA-binding sites in proteins is important for understanding the molecular mechanisms of protein–DNA interaction. Thus, we have developed an improved method to predict DNA-binding sites by integrating structural alignment algorithm and support vector machine–based methods. Results: Evaluated on a new non-redundant protein set with 224 chains, the method has 80.7% sensitivity and 82.9% specificity in the 5-fold cross-validation test. In addition, it predicts DNA-binding sites with 85.1% sensitivity and 85.3% specificity when tested on a dataset with 62 protein–DNA complexes. Compared with a recently published method, BindN+, our method predicts DNA-binding sites with a 7% better area under the receiver operating characteristic curve value when tested on the same dataset. Many important problems in cell biology require the dense non-linear interactions between functional modules be considered. Thus, our prediction method will be useful in detecting such complex interactions. Availability: The PreDNA webserver is freely available at: http://202.207.14.178/predna/index.aspx Contact: qzli@imu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-08-22
    Description: Tight control of B cell differentiation into plasma cells (PCs) is critical for proper immune responses and the prevention of autoimmunity. The Ets1 transcription factor acts in B cells to prevent PC differentiation. Ets1 –/– mice accumulate PCs and produce autoantibodies. Ets1 expression is downregulated upon B cell activation through the BCR and TLRs and is maintained by the inhibitory signaling pathway mediated by Lyn, CD22 and SiglecG, and SHP-1. In the absence of these inhibitory components, Ets1 levels are reduced in B cells in a Btk-dependent manner. This leads to increased PCs, autoantibodies, and an autoimmune phenotype similar to that of Ets1 –/– mice. Defects in inhibitory signaling molecules, including Lyn and Ets1, are associated with human lupus, although the effects are more subtle than the complete deficiency that occurs in knockout mice. In this study, we explore the effect of partial disruption of the Lyn/Ets1 pathway on B cell tolerance and find that Lyn +/– Ets1 +/– mice demonstrate greater and earlier production of IgM, but not IgG, autoantibodies compared with Lyn +/– or Ets1 +/– mice. We also show that Btk-dependent downregulation of Ets1 is important for normal PC homeostasis when inhibitory signaling is intact. Ets1 deficiency restores the decrease in steady state PCs and Ab levels observed in Btk –/– mice. Thus, depending on the balance of activating and inhibitory signals to Ets1, there is a continuum of effects on autoantibody production and PC maintenance. This ranges from full-blown autoimmunity with complete loss of Ets1-maintaining signals to reduced PC and Ab levels with impaired Ets1 downregulation.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-21
    Description: TREX1 is an exonuclease that digests DNA in the cytoplasm. Loss-of-function mutations of TREX1 are linked to Aicardi–Goutieres Syndrome (AGS) and systemic lupus erythematosus (SLE) in humans. Trex1−/− mice exhibit autoimmune and inflammatory phenotypes that are associated with elevated expression of interferon (IFN)-induced genes (ISGs). Cyclic GMP-AMP (cGAMP) synthase (cGAS)...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-21
    Description: Loss-of-function mutations in the Fas death receptor or its ligand result in a lymphoproliferative syndrome and exacerbate clinical disease in most lupus-prone strains of mice. One exception is mice injected with 2,6,10,14-tetramethylpentadecane (TMPD), a hydrocarbon oil commonly known as pristane, which induces systemic lupus erythematosus–like disease. Although Fas/Fas ligand (FasL) interactions have been strongly implicated in the activation-induced cell death of both lymphocytes and other APCs, FasL can also trigger the production of proinflammatory cytokines. FasL is a transmembrane protein with a matrix metalloproteinase cleavage site in the ectodomain. Matrix metalloproteinase cleavage inactivates membrane-bound FasL and releases a soluble form reported to have both antagonist and agonist activity. To better understand the impact of FasL cleavage on both the proapoptotic and proinflammatory activity of FasL, its cleavage site was deleted through targeted mutation to produce the deleted cleavage site (CS) mouse line. CS mice express higher levels of membrane-bound FasL than do wild-type mice and fail to release soluble FasL. To determine to what extent FasL promotes inflammation in lupus mice, TMPD-injected FasL-deficient and CS BALB/c mice were compared with control TMPD-injected BALB/c mice. We found that FasL deficiency significantly reduced the early inflammatory exudate induced by TMPD injection. In contrast, CS mice developed a markedly exacerbated disease profile associated with a higher frequency of splenic neutrophils and macrophages, a profound change in anti-nuclear Ab specificity, and markedly increased proteinuria and kidney pathology compared with controls. These results demonstrate that FasL promotes inflammation in TMPD-induced autoimmunity, and its cleavage limits FasL proinflammatory activity.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-24
    Description: Central tolerance checkpoints are critical for the elimination of autoreactive B cells and the prevention of autoimmunity. When autoreactive B cells encounter their Ag at the immature B cell stage, BCR cross-linking induces receptor editing, followed by apoptosis if edited cells remain autoreactive. Although the transcription factor Foxo1 is known to promote receptor editing, the role of the related factor Foxo3 in central B cell tolerance is poorly understood. We find that BCR-stimulated immature B cells from Foxo3-deficient mice demonstrate reduced apoptosis compared with wild type cells. Despite this, Foxo3 –/– mice do not develop increased autoantibodies. This suggests that the increased survival of Foxo3 –/– immature B cells allows additional rounds of receptor editing, resulting in more cells "redeeming" themselves by becoming nonautoreactive. Indeed, increased Ig usage and increased recombining sequence recombination among Ig-expressing cells were observed in Foxo3 –/– mice, indicative of increased receptor editing. We also observed that deletion of high-affinity autoreactive cells was intact in the absence of Foxo3 in the anti–hen egg lysozyme (HEL)/membrane-bound HEL model. However, Foxo3 levels in B cells from systemic lupus erythematosus (SLE) patients were inversely correlated with disease activity and reduced in patients with elevated anti-dsDNA Abs. Although this is likely due in part to increased B cell activation in these SLE patients, it is also possible that low-affinity B cells that remain autoreactive after editing may survive inappropriately in the absence of Foxo3 and become activated to secrete autoantibodies in the context of other SLE-associated defects.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-07
    Description: TANK-binding kinase 1 (TBK1) is a serine/threonine protein kinase that plays a crucial role in innate immunity. Enhanced TBK1 function is associated with autoimmune diseases and cancer, implicating the potential benefit of therapeutically targeting TBK1. In this article, we examined a recently identified TBK1 inhibitor Compound II on treating autoimmune diseases. We found that Compound II is a potent and specific inhibitor of TBK1-mediated IFN response. Compound II inhibited polyinosinic-polycytidylic acid–induced immune activation in vitro and in vivo. Compound II treatment also ameliorated autoimmune disease phenotypes of Trex1 –/– mice, increased mouse survival, and dampened the IFN gene signature in TREX1 mutant patient lymphoblasts. In addition, we found that TBK1 gene expression is elevated in systemic lupus erythematosus patient cells, and systemic lupus erythematosus cells with high IFN signature responded well to Compound II treatment. Together, our findings provided critical experimental evidence for inhibiting TBK1 with Compound II as an effective treatment for TREX1 -associated autoimmune diseases and potentially other interferonopathies.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-01-18
    Description: Innate immune pattern recognition receptors sense nucleic acids from microbes and orchestrate cytokine production to resolve infection. Inappropriate recognition of host nucleic acids also results in autoimmune disease. In this study, we use a model of inflammation resulting from accrual of self DNA ( DNase II –/– type I IFN receptor [ Ifnar ] –/– ) to understand the role of pattern recognition receptor–sensing pathways in arthritis and autoantibody production. Using triple knockout (TKO) mice deficient in DNase II/IFNaR together with deficiency in either stimulator of IFN genes (STING) or absent in melanoma 2 (AIM2), we reveal central roles for the STING and AIM2 pathways in arthritis. AIM2 TKO mice show limited inflammasome activation and, similar to STING TKO mice, have reduced inflammation in joints. Surprisingly, autoantibody production is maintained in AIM2 and STING TKO mice, whereas DNase II –/– Ifnar –/– mice also deficient in Unc93b, a chaperone required for TLR7/9 endosomal localization, fail to produce autoantibodies to nucleic acids. Collectively, these data support distinct roles for cytosolic and endosomal nucleic acid–sensing pathways in disease manifestations.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-03
    Description: Systemic lupus erythematosus is a multisystem autoimmune disease characterized by autoantibodies targeting nucleic acid–associated Ags. The endosomal TLRs TLR7 and TLR9 are critical for generation of Abs targeting RNA- or DNA-associated Ags, respectively. In murine lupus models, deletion of TLR7 limits autoimmune inflammation, whereas deletion of TLR9 exacerbates disease. Whether B cell or myeloid TLR7/TLR9 signaling is responsible for these effects has not been fully addressed. In this study, we use a chimeric strategy to evaluate the effect of B cell–intrinsic deletion of TLR7 versus TLR9 in parallel lupus models. We demonstrate that B cell–intrinsic TLR7 deletion prevents RNA-associated Ab formation, decreases production of class-switched Abs targeting nonnuclear Ags, and limits systemic autoimmunity. In contrast, B cell–intrinsic TLR9 deletion results in decreased DNA-reactive Ab, but increased Abs targeting a broad range of systemic autoantigens. Further, we demonstrate that B cell–intrinsic TLR9 deletion results in increased systemic inflammation and immune complex glomerulonephritis, despite intact TLR signaling within the myeloid compartment. These data stress the critical importance of dysregulated B cell–intrinsic TLR signaling in the pathogenesis of systemic lupus erythematosus.
    Print ISSN: 0022-1767
    Electronic ISSN: 1550-6606
    Topics: Medicine
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...