GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 69 (1991), S. 7503-7509 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The free-electron-laser (FEL) equations are reduced to a set of one-dimensional, normalized equations that allow a universal (dimensional) analysis. In universal parameters, numerical integration of the FEL equations indicates a relatively constant saturated ponderomotive wave amplitude independent of both the normalized wiggler potential amplitude and the injected signal level. The constant ponderomotive wave amplitude and an empirical fit for the universal saturation length as a function of normalized wiggler potential amplitude and gain permits unnormalized design calculations for saturated power and saturated length over a wide parameter range. Tapering is considered by deriving analytical expressions for the intrinsic efficiency and taper length. Design values for a high-gain, high-efficiency, tapered amplifier at 280 and 560 GHz are presented.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 2180-2185 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Direct measurements of phase noise in a four-cavity, 35 GHz gyroklystron producing 50 μs pulses of 175–210 kW output power with 50–53 dB saturated gain are presented. The measurements were performed at a 10.7 MHz frequency offset from the carrier, where the noise is expected to be dominated by shot noise and where the extrinsic noise from the electron gun's pulsed power supply is manageable. At an operating point with 70 kV beam voltage, 9 A beam current, and a beam velocity ratio of 1.3, a phase noise of −149±1 dBc/Hz was measured during the production of 180 kW output power at 50 dB gain. At a higher beam current of 10 A, the measured phase noise was −146±1 dBc/Hz during production of a 200 kW output power carrier with 53 dB gain. The directly measured phase noise levels were generally within 2–3 dB of the values expected on the basis of carrier-free noise temperature measurements. Overall, the measured gyroklystron noise levels are similar to those of conventional klystrons. Also presented are analytic calculations of the growth rates expected for electrostatic cyclotron instabilities in the region between the electron gun and the input cavity in a previous three-cavity gyroklystron. Very modest perpendicular velocity spreads (rms greater than 2%) are found to completely suppress such noise growth. This lack of significant noise growth above that of bare shot noise is in agreement with experimental results. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 4 (1997), S. 209-216 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The design of high power, continuous wave (cw), 170 GHz gyrotron cavities is considered. The anticipated degradation of efficiency with beam velocity spread places a premium on the optimization of efficiency. For parameters of interest achievement of high efficiency requires utilization of a high quality cavity. Two options are considered: a barrel cavity and a long simple tapered cavity operating at low voltage. The cavities are examined for their sensitivity to velocity spread, their mode competition, and their maximum Ohmic power dissipation. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 2839-2846 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Mode competition can present a major hurdle in achieving stable, efficient operation of a gyrotron at the cyclotron harmonics. A type of mode interaction in which three modes at different cyclotron harmonics are parametrically coupled together is analyzed here. This coupling can lead to parametric excitation or suppression of a mode; cyclic mode hopping; or the coexistence of three modes. Simulation results are presented for the parametric instability involving modes at the fundamental, second harmonic, and third harmonic of the cyclotron frequency. It is shown that the parametric excitation can lead to stable, efficient operation of a high-power gyrotron at the third harmonic. Based on this phenomenon, two practical designs are presented here for the third harmonic operation at 94 and 210 GHz. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 730-740 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A numerical model for analyzing backward-wave oscillators (BWOs) operating near the upper edge of the transmission band is presented. The model is used to calculate starting currents for two finite length devices, an X-band BWO (f=8.4 GHz) and a J-band BWO (f=5.5 GHz). The operating frequency and efficiency predicted by the nonlinear numerical simulations are compared with experimental data for each device.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A series of high power, high efficiency Ka-band and W-band gyroklystron experiments has been conducted recently at the Naval Research Laboratory (NRL). Stagger tuning of the cavities for bandwidth enhancement is commonly used in the conventional multicavity klystrons. The desired stagger tuning is usually achieved via mechanical tuning of the individual cavities. However, in the millimeter wave regime, particularly, in the case of the high average power operation, it is desirable to be able to achieve the required stagger tuning by design. The NRL gyroklystron experiments explored the tradeoffs between power, bandwidth, efficiency, and gain to study the effects of large stagger tuning in millimeter wave without resorting to mechanical tuning of the cavities. Both, Ka-band and W-band, experiments demonstrated a record power-bandwidth product. The success of the experiments was due in large part to a battery of improved large-signal, stability, and cold test codes employed in the modeling and design stage. Theoretical models that provide the basis for these design simulation tools and the design methodology will be presented. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 4621-4630 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of displacement of an annular electron beam with respect to the resonator axis on gyrotron operation is studied. The coupling between co- and counter-rotating TEm,p waves caused by eccentricity is analyzed both in the linear and nonlinear regimes. Nonlinear regimes are studied first in the quasilinear approximation, when the dependence of the electron gain functions on the field amplitude is described by a polynomial approximation. This makes it possible to study analytically some nonlinear effects caused by eccentricity. Then a self-consistent set of equations is studied numerically in the case of the MIT gyrotron [Blank et al., IEEE Trans. Plasma Sci. PS-22, 883 (1994)] operating in the TE16,2 mode at the fundamental cyclotron harmonic, where such effects have been studied experimentally, and of a gyrotron operating in the TE1,2 mode at the second harmonic. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 1708-1713 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A wiggler-focused, sheet beam free electron laser (FEL) amplifier utilizing a short-period wiggler magnet has been proposed as a millimeter-wave source for current profile modification and/or electron cyclotron resonance heating of tokamak plasmas. As proposed, such an amplifier would operate at a frequency of approximately 100–200 GHz with an output power of 1–10 MW CW. Electron beam energy would be in the range 500–1000 keV. To test important aspects of this concept, an initial sheet beam FEL amplifier experiment has been performed using a 1 mm×2 cm sheet beam produced by a pulse line accelerator with a pulse duration of 100 ns. The 500–570 keV, 4–18 A sheet beam is propagated through a 56 period uniform wiggler (λw=9.6 mm) with a peak wiggler amplitude of 2–5 kG. Linear amplification of a 5–10 W, 94 GHz signal injected in the TE01 rectangular mode is observed. All features of the amplified signal, including pulse shape and duration, are in accordance with the predictions of numerical simulation. Amplified signal gain has been measured as a function of injected beam energy, current, and wiggler field amplitude and is also in good agreement with simulation results. Continuation of this experiment will involve studying nonlinear amplifier operation and adding a section of tapered wiggler.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In gyro-devices, a nonlinear output taper is often employed as the transition from the near cutoff radius of the interaction circuit to a much larger output waveguide. The tapers are usually designed to avoid passive mode conversion, and thus do not consider the effect of a bunched beam. However, recent simulations with the self-consistent MAGY code [Botton et al., IEEE Trans. Plasma Sci. 26, 882 (1998)] indicate that higher order mode interactions with the bunched electron beam can substantially compromise the mode purity of the rf output. The interaction in the taper region is traveling wave in nature, and is strongly dependent on the residual beam bunching characteristics resulting from the upstream operating mode interaction. An experiment has been performed to quantify the rf output mode content from a Ka-band gyroklystron. The agreement between salient theoretical and measured rf output characteristics confirms the existence of higher order mode excitation in output tapers as predicted by theory. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 6 (1999), S. 4405-4409 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The experimental demonstration of a high average power W-band (75–110 GHz) gyroklystron amplifier is reported. The gyroklystron has produced 118 AW peak output power and 29.5% electronic efficiency in the TE011 mode using a 66.7 kV, 6 A electron beam at 0.2% rf duty factor. At this operating point, the instantaneous full width at half-maximum (FWHM) bandwidth is 600 MHz. At 11% rf duty factor, the gyroklystron has produced up to 10.1 kW average power at 33% electronic efficiency with a 66 kV, 4.15 A electron beam. This represents world record performance for an amplifier at this frequency. At the 10.1 kW average power operating point, the FWHM bandwidth is 420 MHz. At higher magnetic fields and lower beam voltages, larger bandwidths can be achieved at the expense of peak and average output power. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...