GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2021-10-02
    Description: On small scales, the tropical atmosphere tends to be either moist or very dry. This defines two states that, on large scales, are separated by a sharp margin, well identified by the antimode of the bimodal tropical column water vapor distribution. Despite recent progress in understanding physical processes governing the spatiotemporal variability of tropical water vapor, the behavior of this margin remains elusive, and we lack a simple framework to understand the bimodality of tropical water vapor in observations. Motivated by the success of coarsening theory in explaining bimodal distributions, we leverage its methodology to relate the moisture field's spatial organization to its time evolution. This results in a new diagnostic framework for the bimodality of tropical water vapor, from which we argue that the length of the margin separating moist from dry regions should evolve toward a minimum in equilibrium. As the spatial organization of moisture is closely related to the organization of tropical convection, we hereby introduce a new convective organization index (BLW) measuring the ratio of the margin's length to the circumference of a well-defined equilibrium shape. Using BLW, we assess the evolution of self-aggregation in idealized cloud-resolving simulations of radiative-convective equilibrium and contrast it to the time evolution of the Atlantic Intertropical Convergence Zone (ITCZ) in the ERA5 meteorological reanalysis product. We find that BLW successfully captures aspects of convective organization ignored by more traditional metrics, while offering a new perspective on the seasonal cycle of convective organization in the Atlantic ITCZ.
    Keywords: 551.5 ; convection ; self-aggregation ; potential ; organization index ; water vapor ; ITCZ
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-04
    Description: The representation of tropical precipitation is evaluated across three generations of models participating in phases 3, 5, and 6 of the Coupled Model Intercomparison Project (CMIP). Compared to state-of-the-art observations, improvements in tropical precipitation in the CMIP6 models are identified for some metrics, but we find no general improvement in tropical precipitation on different temporal and spatial scales. Our results indicate overall little changes across the CMIP phases for the summer monsoons, the double-ITCZ bias, and the diurnal cycle of tropical precipitation. We find a reduced amount of drizzle events in CMIP6, but tropical precipitation occurs still too frequently. Continuous improvements across the CMIP phases are identified for the number of consecutive dry days, for the representation of modes of variability, namely, the Madden–Julian oscillation and El Niño–Southern Oscillation, and for the trends in dry months in the twentieth century. The observed positive trend in extreme wet months is, however, not captured by any of the CMIP phases, which simulate negative trends for extremely wet months in the twentieth century. The regional biases are larger than a climate change signal one hopes to use the models to identify. Given the pace of climate change as compared to the pace of model improvements to simulate tropical precipitation, we question the past strategy of the development of the present class of global climate models as the mainstay of the scientific response to climate change. We suggest the exploration of alternative approaches such as high-resolution storm-resolving models that can offer better prospects to inform us about how tropical precipitation might change with anthropogenic warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...