GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2019-09-23
    Description: We present results from the first three-dimensional (3D) marine seismic dataset ever collected over volcanic landslide deposits, acquired offshore of the Soufrière Hills volcano on the island of Montserrat in the Lesser Antilles. The 3D data enable detailed analysis of various features in and around these mass wasting deposits, such as surface deformation fabrics, the distribution and size of transported blocks, change of emplacement direction and erosion into seafloor strata. Deformational features preserved on the surface of the most recent debris avalanche deposit (Deposit 1) reveal evidence for spatially-variant deceleration as the mass failure came to rest on the seafloor. Block distributions suggest that the failure spread out very rapidly, with no tendency to develop longitudinal ridges. An older volcanic flank collapse deposit (Deposit 2) appears to be intrinsically related to large-scale secondary failure of seafloor sediments. We observe pronounced erosion directly down-slope of a prominent headwall, where translational sliding of well-stratified sediments was initiated. Deep-reaching faults controlled the form and location of the headwall, and stratigraphic relationships suggest that sliding was concurrent with volcanic flank collapse emplacement. We also identified a very different mass wasting unit between Deposit 1 and Deposit 2 that was likely emplaced as a series of particle-laden mass flows derived from pyroclastic flows, much like the recent (since 1995) phase of deposition offshore Montserrat but at a much larger scale. This study highlights the power of 3D seismic data in understanding landslide emplacement processes offshore of volcanic islands. Highlights: ► 3D seismic data show new detail of volcanic landslide deposits offshore Montserrat. ► Volcanic flank collapse material has been diverted around seafloor topographic highs. ► This bending during emplacement has caused pronounced erosion into seafloor strata. ► Erosion can destabilize seafloor slopes, which then fail as translational slides. ► Block distributions and surface deformation give insight into debris avalanche style.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-11
    Description: Recent seafloor mapping around volcanic islands shows that submarine landslide deposits are common and widespread. Such landslides may cause devastating tsunamis, but accurate assessment of tsunami hazard relies on understanding failure processes and sources. Here we use high-resolution geophysical data offshore from Montserrat, in the Lesser Antilles, to show that landslides around volcanic islands may involve two fundamentally different sources of sediment (island-flank and larger seafloor-sediment failures), and can occur in multiple stages. A combination of these processes produces elongate deposits, with a blocky centre (associated with island-flank collapse), surrounded by a smoother-surfaced deposit that is dominated by failed seafloor sediment. The failure of seafloor sediment is associated with little marginal accumulation, and involves only limited downslope motion. Submarine landslide deposits with similar blocky and smooth-surfaced associations are observed in several locations worldwide, but the complex emplacement processes implied by this morphological relationship can only be revealed by high-resolution geophysical data. Such complexity shows that the volume of landslide deposits offshore of volcanic islands cannot simply be used in tsunami models to reflect a single-stage collapse of primary volcanic material. By applying predictive equations for tsunami amplitude to investigate general scenarios of volcanic island landslide generation, we show that the tsunami hazard associated with volcanic island collapse remains highly significant. Volcanic flank failures, even if relatively small, may generate large local tsunamis, but associated seafloor sediment failures, even if they have a much greater volume, have a substantially lower potential for tsunami generation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...