GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: t[3H]Butylbicycloorthobenzoate ([3H]TBOB; 22 Ci/mmol) was prepared by reductive dechlorination of its 4-chlorophenyl analog with tritium gas. This new radioligand binds reversibly to fresh washed rat brain P2 membranes in 500 mM NaCl plus 50 mM sodium-potassium phosphate buffer (pH 7.4) at 25°C, with 80–90% specific relative to total binding, a KD of 61 ± 15 nM, and a Bmax of 1.6 ± 0.5 pmol/mg of protein. [3H]TBOB association with its binding site(s) is monophasic, but its dissociation is biphasic. The binding characteristics of [3H]TBOB are essentially identical to those of t-[35S]butylbicyclophosphorothionate ([35S]TBPS) with respect to pH dependence, stimulation by anions, regional distribution in the brain, and pharmacological profile. Saturation analyses and dissociation studies further indicate that TBOB and TBPS have a common binding site. However, binding of the two radioligands differs in respect to temperature effects. In contrast to [35S]TBPS, which exhibits negligible binding at 0°C, [3H]TBOB binds to rat brain membranes at 0, 25, and 37°C with similar KD values. [3H]TBOB with its long radioactive half-life and temperature-independent KD is a valuable supplement to [35S]TBPS in further biochemical and pharmacological characterization of the γ-aminobutyric acid receptor-ionophore complex.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...