GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-30
    Description: Even modest ash-rich volcanic eruptions can severely impact a range of human activities, especially air travel. The dispersal of ash in these eruptions depends critically on aggregation and sedimentation processes - however these are difficult to quantify in volcanic plumes. Here, we image ash dynamics from mild explosive activity at Santiaguito Volcano, Guatemala, by measuring the depolarisation of scattered sunlight by non-spherical ash particles, allowing the dynamics of diffuse ash plumes to be investigated with high temporal resolution (〉1 Hz). We measure the ash settling velocity downwind from the main plume, and compare it directly with ground sampled ash particles, finding good agreement with a sedimentation model based on particle size. Our new, cost-effective technique leverages existing technology, opening a new frontier of integrated ash visualisation and ground collection studies which could test models of ash coagulation and sedimentation, leading to improved ash dispersion forecasts. This will provide risk managers with improved data quality on ash location, reducing the economic and societal impacts of future ash-rich eruptions.
    Description: Published
    Description: 15680
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-14
    Description: Gas-and-ash explosions at the Santiaguito dome complex, Guatemala, commonly occur through arcuate fractures, following a 5- to 6-min period of inflation observed in long-period seismic signals. Observation of active faults across the dome suggests a strong shear component, but as fault propagation generally proceeds through the coalescence of tensile fractures, we surmise that explosive eruptions require tensile rupture. Here, we assess the effects of temperature and strain rate on fracture propagation and the tensile strength of Santiaguito dome lavas. Indirect tensile tests were conducted on samples with a porosity range of 3–30% and over diametral displacement rates of 0.04, 0.004, and 0.0004 mm/s. At room temperature, the tensile strength of dome rock is rate independent (within the range tested) and inversely proportional to the porosity of the material. At eruptive temperatures we observe an increasingly ductile response at either higher temperature or lower displacement rate, where ductile deformation is manifest by a reduction in loading rate during constant deformation rate tests, resulting in slow tearing, viscous flow, and pervasive damage. We propose a method to conduct indirect tensile tests under volcanic conditions using a modification of the Brazilian disc testing protocol and use brittleness indices to classify deformation modes across the brittle-ductile transition. We show that a degree of ductile damage is inevitable in the lava core during explosions at the Santiaguito dome complex and discuss how strain leading to rupture controls fracture geometry, which would impact gas pressure release or buildup and regulate explosive activity.
    Keywords: 551.21 ; 551.8 ; tensile strength ; Santiaguito ; Brittleness Index ; brittle-ductile ; indirect tensile tests ; Brazilian disc tests
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-03
    Description: Processes occurring in volcanic conduits, the pathways through which magma travels from its storage region to the surface, have a fundamental control on the nature of eruptions and associated phenomena. It has been well established that magma flows, crystallizes, degasses, and fragments in conduits, that fluids migrate in and out of conduits, and that seismic and acoustic waves are generated and travel within conduits. A better understanding of volcanic conduits and related processes is of paramount importance for improving eruption forecasting, volcanic hazard assessment and risk mitigation. However, despite escalating advances in the characterization of individual conduit processes, our understanding of their mutual interactions and the consequent control on volcanic activity is still limited. With the purpose of addressing this topic, a multidisciplinary workshop led by a group of international scientists was hosted from 25 to 27 October 2014 by the Pisa branch of the Istituto Nazionale di Geofisica e Vulcanologia under the sponsorship of the MeMoVolc Research Networking Programme of the European Science Foundation. The workshop brought together the experimental, theoretical, and observational communities devoted to volcanological research. After 3 days of oral and poster presentations, breakout sessions, and plenary discussions, the participants identified three main outstanding issues common to experimental, analytical, numerical, and observational volcanology: unsteadiness (or transience), disequilibrium, and uncertainty. A key outcome of the workshop was to identify the specific knowledge areas in which exchange of information among the subdisciplines would lead to efficient progress in addressing these three main outstanding issues. It was clear that multidisciplinary collaboration of this sort is essential for progressing the state of the art in understanding of conduit magma dynamics and eruption behavior. This holistic approach has the ultimate aim to deliver fundamental improvements in understanding the underlying processes generating and controlling volcanic activity.
    Description: Published
    Description: S0666
    Description: 4V. Dinamica dei processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-05
    Description: Understanding the interactions between surface and deep Earth processes is important for research in many diverse scientific areas including climate, environment, energy, georesources and biosphere. The TOPO-EUROPE initiative of the International Lithosphere Program serves as a pan-European platform for integrated surface and deep Earth sciences, synergizing observational studies of the Earth structure and fluxes on all spatial and temporal scales with modelling of Earth processes. This review provides a survey of scientific developments in our quantitative understanding of coupled surface-deep Earth processes achieved through TOPO-EUROPE. The most notable innovations include (1) a process-based understanding of the connection of upper mantle dynamics and absolute plate motion frames; (2) integrated models for sediment source-to-sink dynamics, demonstrating the importance of mass transfer from mountains to basins and from basin to basin; (3) demonstration of the key role of polyphase evolution of sedimentary basins, the impact of pre-rift and pre-orogenic structures, and the evolution of subsequent lithosphere and landscape dynamics; (4) improved conceptual understanding of the temporal evolution from back-arc extension to tectonic inversion and onset of subduction; (5) models to explain the integrated strength of Europe's lithosphere; (6) concepts governing the interplay between thermal upper mantle processes and stress-induced intraplate deformation; (7) constraints on the record of vertical motions from high-resolution data sets obtained from geo-thermochronology for Europe's topographic evolution; (8) recognition and quantifications of the forcing by erosional and/or glacial-interglacial surface mass transfer on the regional magmatism, with major implications for our understanding of the carbon cycle on geological timescales and the emerging field of biogeodynamics; and (9) the transfer of insights obtained on the coupling of deep Earth and surface processes to the domain of geothermal energy exploration. Concerning the future research agenda of TOPO-EUROPE, we also discuss the rich potential for further advances, multidisciplinary research and community building across many scientific frontiers, including research on the biosphere, climate and energy. These will focus on obtaining a better insight into the initiation and evolution of subduction systems, the role of mantle plumes in continental rifting and (super)continent break-up, and the deformation and tectonic reactivation of cratons; the interaction between geodynamic, surface and climate processes, such as interactions between glaciation, sea level change and deep Earth processes; the sensitivity, tipping points, and spatio-temporal evolution of the interactions between climate and tectonics as well as the role of rock melting and outgassing in affecting such interactions; the emerging field of biogeodynamics, that is the impact of coupled deep Earth – surface processes on the evolution of life on Earth; and tightening the connection between societal challenges regarding renewable georesources, climate change, natural geohazards, and novel process-understanding of the Earth system.
    Description: Published
    Description: 104140
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: OSA5: Energia e georisorse
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    MSA (Mineralogical Society of America)
    Publication Date: 2023-01-04
    Description: The product of frictional melting of geomaterials is termed “pseudotachylyte”. The name, first coined by Shand (1916), represents the visual similarity to the lava “tachylyte”, being a dark aphanitic rock with a glassy appearance. Pseudotachylytes have been referred to by many names since their first identification, including trap-shotten gneiss (Holland 1900), hyalomylonite (Masch et al. 1985) and frictionite (Maddock 1986), the latter of which is still occasionally used. Controversy remains as to the precise defining characteristics of pseudotachylytes (Magloughlin and Spray 1992; Rowe et al. 2005; Spray 2010) and...
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...