GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-28
    Description: The assassination of Julius Caesar in 44 BCE triggered a power struggle that ultimately ended the Roman Republic and, eventually, the Ptolemaic Kingdom, leading to the rise of the Roman Empire. Climate proxies and written documents indicate that this struggle occurred during a period of unusually inclement weather, famine, and disease in the Mediterranean region; historians have previously speculated that a large volcanic eruption of unknown origin was the most likely cause. Here we show using well-dated volcanic fallout records in six Arctic ice cores that one of the largest volcanic eruptions of the past 2,500 y occurred in early 43 BCE, with distinct geochemistry of tephra deposited during the event identifying the Okmok volcano in Alaska as the source. Climate proxy records show that 43 and 42 BCE were among the coldest years of recent millennia in the Northern Hemisphere at the start of one of the coldest decades. Earth system modeling suggests that radiative forcing from this massive, high-latitude eruption led to pronounced changes in hydroclimate, including seasonal temperatures in specific Mediterranean regions as much as 7 °C below normal during the 2 y period following the eruption and unusually wet conditions. While it is difficult to establish direct causal linkages to thinly documented historical events, the wet and very cold conditions from this massive eruption on the opposite side of Earth probably resulted in crop failures, famine, and disease, exacerbating social unrest and contributing to political realignments throughout the Mediterranean region at this critical juncture of Western civilization.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    GSA (The Geological Society of America)
    In:  Geological Society of America Bulletin, 128 (5-6). pp. 792-806.
    Publication Date: 2020-06-23
    Description: Eruptions of similar explosivity can have divergent effects on the surroundings due to differences in the behavior of the tephra in the eruption column and atmosphere. Okmok volcano, located on Umnak Island in the eastern Aleutian Islands, erupted explosively between 12 July and 19 August 2008. The basaltic andesitic eruption ejected ∼0.24 km3 dense rock equivalent (DRE) of tephra, primarily directed to the northeast of the vent area. The first 4 h of the eruption produced dominantly coarse-grained tephra, but the following 5 wk of the eruption deposited almost exclusively ash, much of it very fine and deposited as ash pellets and ashy rain and mist. Meteorological storms combined with abundant plume water to efficiently scrub ash from the eruption column, with a rapid decrease in deposit thickness with distance from the vent. Grain-size analysis shows that the modes (although not their relative proportions) are very constant throughout the deposit, implying that the fragmentation mechanisms did not vary much. Grain-shape features consistent with molten fuel-coolant interaction are common. Surface and groundwater drainage into the vents provided the water for phreatomagmatic fragmentation. The available water (water that could reach the vent area during the eruption) was ∼2.8 × 1010 kg, and the erupted magma totaled ∼7 × 1011 kg, which yield an overall water:magma mass ratio of ∼0.04, but much of the water was not interactive. Although magma flux dropped from 1 × 107 kg/s during the initial 4 h to 1.8 × 105 kg/s for the remainder of the eruption, most of the erupted material was ejected during the lower-mass-flux period due to its much greater length, and this tephra was dominantly deposited within 10 km downwind of the vent. This highlights the importance of ash scrubbing in the evaluation of hazards from explosive eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-01
    Description: The July–August 2008 phreatomagmatic eruption of Okmok Volcano produced ~ 0.26 km3 (DRE) of phenocryst-poor (1 to 2 vol.%) basaltic andesite ejecta, compositionally distinct from the basalt erupted during 1997 (51.90 wt.% SiO2). Analyzed juvenile products are tan to dark gray vesicular lapilli (scoria), and dense, purple-black bombs. Whole-rock compositions cluster tightly (54.97 ± 0.25 wt.% SiO2). The eruption also produced mafic ash containing basaltic groundmass glasses (52 wt.% SiO2) and olivine-hosted melt inclusions (down to 47 wt.% SiO2). The scoria and early-erupted ash contain compositionally similar plagioclase, clinopyroxene, and olivine phenocrysts. Olivine phenocrysts in the scoria and ash are not in equilibrium with the basaltic andesite whole-rock composition. Olivine-hosted melt inclusions yield 0.11 (± 0.04) to 3.61 (± 1.24) wt.% total H2O by μ-FTIR, with an average of 1.23 ± 0.68 (1σ) wt.%. Three inclusions contain CO2 = 37 to 49 ppm with the rest below detection. Solubility model-derived inclusion entrapment/re-equilibration depths extend from near surface to 4.6 (± 2.5) km, in agreement with recent geophysical studies. The 2008 eruption was triggered by an influx of melt-rich basalt originating from the 3 to 6 km storage region beneath the center of the caldera, which intersected a shallower, more evolved magma body beneath Cone D. Our study concludes that the Okmok magma system is “mush-column” like, containing multiple magma bodies with a common and frequent replenishment source, but segregated with unique geochemical signatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...