GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Nanotubes. ; Electronic books.
    Description / Table of Contents: This book surveys the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. The text illustrates major fabrication methods in detail, particularly the most widely used PECVD growth techniques.
    Type of Medium: Online Resource
    Pages: 1 online resource (309 pages)
    Edition: 1st ed.
    ISBN: 9783642304903
    Series Statement: NanoScience and Technology Series
    Language: English
    Note: Intro -- Aligned Carbon Nanotubes -- Foreword -- Preface -- Contents -- Acronyms -- 1 Introduction to Carbon -- References -- 2 Carbon Nanotubes -- 2.1 History of Carbon Nanotubes -- 2.1.1 History Before 1991 -- 2.1.2 History Since 1991 -- 2.1.3 History of Aligned Carbon Nanotubes -- 2.2 Structures of Carbon Nanotubes -- 2.2.1 Graphite -- 2.2.2 Single-Walled Carbon Nanotubes -- 2.2.3 Double-Walled Carbon Nanotubes -- 2.2.4 Multi-Walled Carbon Nanotubes -- 2.2.5 Bamboo-Like Carbon Nanotubes -- 2.2.6 CNT Y-Junctions -- 2.2.7 Carbon Nanobuds -- 2.2.8 CNT Nanotorus and Micro-Rings -- 2.2.9 Carbon Microtubes -- 2.2.10 Amorphous Carbon Nanotubes -- 2.2.11 Coiled Carbon Nanotubes -- 2.2.12 Flattened Carbon Nanotubes -- 2.2.13 Other Carbon Nanomaterials -- 2.3 Physical Properties of Carbon Nanotubes -- 2.3.1 Anisotropic Mechanical Properties -- 2.3.2 Anisotropic Electrical Properties -- 2.3.3 Anisotropic Thermal Conductivity -- 2.3.4 Anisotropic Thermal Diffusivity -- 2.3.5 Anisotropic Seebeck Coefficient -- 2.3.6 Other Anisotropic Physical Properties -- References -- 3 Growth Techniques of Carbon Nanotubes -- 3.1 Arc Discharge -- 3.2 Laser Ablation -- 3.3 Chemical Vapor Deposition -- 3.4 Hydrothermal Methods -- 3.5 Flame Method -- 3.6 Disproportionation of Carbon Monoxide -- 3.7 Catalytic Pyrolysis of Hydrocarbons -- 3.8 Electrolysis -- 3.9 Solar Energy -- References -- 4 Chemical Vapor Deposition of Carbon Nanotubes -- 4.1 Thermal Chemical Vapor Deposition -- 4.1.1 Hot-Wall Chemical Vapor Deposition -- 4.1.2 Hot-Wire Chemical Vapor Deposition -- 4.1.3 Thermal Chemical Vapor Deposition Growth Mechanism of Carbon Nanotubes -- 4.1.4 Experimental Condition of Carbon Nanotube Array Growth -- 4.2 Plasma-Enhanced Chemical Vapor Deposition -- 4.2.1 Direct Current Plasma-Enhanced Chemical Vapor Deposition. , 4.2.2 Radio-Frequency Plasma-Enhanced Chemical Vapor Deposition -- 4.2.3 Microwave Plasma-Assisted Chemical Vapor Deposition -- 4.2.4 Plasma-Enhanced Chemical Vapor Deposition Growth Mechanism of Carbon Nanotube Alignment -- 4.2.5 Experimental Conditions of Plasma-Enhanced Chemical Vapor Deposition Growth -- References -- 5 Physics of Direct Current Plasma-Enhanced Chemical Vapor Deposition -- 5.1 Equipment Setup and Growth Procedure -- 5.2 Substrate and Underlayer -- 5.3 Growth Temperature -- 5.4 Plasma Heating and Etching Effects -- 5.5 Plasma States -- 5.6 Catalyst Crystal Orientation -- 5.7 Electric Field Manipulation -- 5.8 DC-PECVD Growth Mechanism -- 5.8.1 First Stage: Randomly Entangled CNT Growth -- 5.8.2 Second Stage: Partially Aligned CNT Growth -- 5.8.3 Third Stage: Fully Aligned CNT Growth -- 5.8.4 DC-PECVD Growth Mechanism -- References -- 6 Technologies to Achieve Carbon Nanotube Alignment -- 6.1 In Situ Techniques for Carbon Nanotube Alignment -- 6.1.1 Thermal CVD with Crowding Effect -- 6.1.2 Thermal CVD with Imposed Electric Field -- 6.1.3 Thermal CVD under Gas Flow Fields -- 6.1.4 Thermal CVD Growth with Epitaxy -- 6.1.5 Thermal CVD under Magnetic Fields -- 6.1.6 Vertically Aligned CNT Arrays Grown by PECVD -- 6.1.7 Other In Situ techniques -- 6.2 Ex Situ Techniques for Carbon Nanotube Alignment -- 6.2.1 Ex Situ Alignment Under Electric Fields -- 6.2.2 Ex Situ Alignment Under Magnetic Fields -- 6.2.3 Ex Situ Mechanical Methods -- 6.2.4 Other Ex Situ Methods -- References -- 7 Measurement Techniques of Aligned Carbon Nanotubes -- 7.1 Scanning Electron Microscopy -- 7.2 Bragg Diffraction -- 7.2.1 X-Ray Diffraction -- 7.2.2 Neutron Diffraction -- 7.2.3 Electron Diffraction -- 7.2.4 Light Diffraction -- 7.3 Small-Angle Scattering -- 7.3.1 Small-Angle X-Ray Scattering -- 7.3.2 Small-Angle Neutron Scattering -- 7.4 Raman Spectroscopy. , 7.5 Transmission Electron Microscopy -- 7.6 Scanning Tunneling Microscopy -- 7.7 Atomic Force Microscopy -- 7.8 Other Techniques -- References -- 8 Properties and Applications of Aligned Carbon Nanotube Arrays -- 8.1 Field Emission Devices -- 8.1.1 Field Emission of Aligned Carbon Nanotube Arrays -- 8.1.2 Carbon Nanotube Array Emitters -- 8.1.3 High-Intensity Electron Sources -- 8.1.4 Lighting -- 8.1.5 Field Emission Flat Panel Displays -- 8.1.6 Incandescent Displays -- 8.1.7 X-Ray Generators -- 8.1.8 Microwave Devices -- 8.1.9 Other Field Emission Devices -- 8.2 Optical Devices -- 8.2.1 Photonic Crystals -- 8.2.2 Optical Antennae -- 8.2.3 Optical Waveguides -- 8.2.4 SWCNT Array Solar Cells -- 8.2.5 Solar Cells Based on MWCNT Nanocoaxes -- 8.3 Nanoelectrode-Based Sensors -- 8.3.1 Nanoelectrode Arrays -- 8.3.2 Ion Sensors -- 8.3.3 Gas Sensors -- 8.3.4 Biosensors -- 8.4 Thermal Devices: Thermal Interface Materials -- 8.5 Electrical Interconnects and Vias -- 8.6 Templates -- 8.7 Aligned-CNT Composites and Applications -- References -- 9 Potential Applications of Carbon Nanotube Arrays -- 9.1 Mechanical Devices -- 9.1.1 Carbon Nanotube Ropes -- 9.1.2 TEM Grids -- 9.1.3 Artificial Setae -- 9.1.4 Piezoresistive Effects: Pressure and Strain Sensors -- 9.2 Electrical Devices -- 9.2.1 Random Access Memory -- 9.2.2 Low κ Dielectrics -- 9.2.3 Transistors -- 9.3 Acoustic Sensors -- 9.3.1 Artificial Ears -- 9.3.2 Thermoacoustic Loudspeakers -- 9.4 Electrochemical and Chemical Storage Devices -- 9.4.1 Fuel Cells -- 9.4.2 Supercapacitors -- 9.4.3 Lithium Ion Batteries -- 9.4.4 Hydrogen Storage -- 9.5 Electromechanical Devices: Actuators -- 9.6 Terahertz Sources -- 9.7 Other Applications -- References -- Epilogue -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Hauppauge :Nova Science Publishers, Incorporated,
    Keywords: Titanium dioxide crystals. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (251 pages)
    Edition: 1st ed.
    ISBN: 9781536110838
    Series Statement: Nanotechnology Science and Technology
    DDC: 620.5
    Language: English
    Note: Intro -- TITANIUM DIOXIDE NANOPARTICLES CHARACTERIZATIONS, PROPERTIES AND SYNTHESES -- TITANIUM DIOXIDE NANOPARTICLES CHARACTERIZATIONS, PROPERTIES AND SYNTHESES -- CONTENTS -- PREFACE -- Chapter1NEWAPPLICATIONSOFTIO2NANOPARTICLESINRENEWABLEENERGY -- Abstract -- 1.Introduction -- 2.TraditionalApplicationsofTiO2Nanoparticles -- 3.PhotoactivitiesandNewApplicationsofTiO2Nanoparticles -- 4.SynthesisofTitaniumOxideNanoparticles -- 5.SafetyofTiO2Nanoparticles -- Conclusion -- References -- Chapter2TIO2BROOKITE:PROPERTIES,SYNTHESISANDAPPLICATIONS -- Abstract -- 1.Introduction -- 2.PropertiesofBrookite -- 2.1.StructuralProperties -- 2.2.ElectronicProperties -- 2.3.ThermalStability -- 3.SyntheticRoutesAffordingBrookite -- 3.1.Hydro-andSolvothermalSynthesis -- 3.1.1.TitaniumChloridePrecursors -- 3.1.2.TitaniumSulphatePrecursors -- 3.1.3.TitaniumOxidePrecursors -- 3.1.4.WaterSolubleTitaniumComplexPrecursors -- 3.2.SynthesisofMorphology-ControlledBrookite -- 3.3.SynthesisofBrookiteFilms -- 4.BrookiteApplications -- 4.1.PhotocatalyticActivity -- 4.1.1.PureBrookite -- 4.1.2.DopedorLoadedBrookite -- 4.2.Superhydrophilicity -- 4.3.PhotocatalyticOrganicSynthesis -- 4.4.HydrogenProductionandWaterSplitting -- 4.5.LiBatteriesandElectrochromicDevices -- 4.6.SolarCells -- 4.7.GasSensors -- 4.8.OtherApplications -- Conclusion -- References -- Chapter3HYDROTHERMALSYNTHESISOFBROOKITE-TYPETITANIACRYSTALSUSINGWATER-SOLUBLETITANIUMCOMPLEXES -- Abstract -- 1.Introduction -- 2.HydrothermalSynthesisofSingle-PhaseBrookite-TypeTitania -- 2.1.UsingTitaniumComplexesContainingHydroxyAcids -- 2.2.UsingTitaniumComplexesCoordinatedbyAminesandTheirDerivatives -- 3.MorphologicalControlofBrookite-TypeTitaniaCrystalsDuringHydrothermalSynthesis -- Conclusion -- References -- Chapter4IONICLIQUIDASSISTEDSYNTHESISOFNANOSTRUCTUREDTIO2VIAHYDROTHERMALMETHOD -- Abstract -- 1.Introduction. , 2.MaterialsandMethods -- 2.1.HydrothermalSynthesisofHierarchicalTiO2 -- 2.2.IonicLiquids -- 2.3.Synthesisof[CMIM][HSO4]IonicLiquid -- 2.4.SynthesisofTiO2NanoflowersviaRTIL -- 3.ResultsandDiscussion -- 3.1.ProposedGrowthMechanism -- 3.2.StructuralPropertiesofTNFs -- 3.3.Brunauer-Emmett-Teller(BET)Study -- 3.4.EnergyConversionApplication -- 3.4.1.DSSCDeviceFabrication -- 3.4.2.PhotovoltaicProperties -- 3.5.ElectrochemicalImpedanceSpectroscopy(EIS)Study -- ConclusionandOutlook -- Acknowledgments -- References -- Chapter5GREENSYNTHESISOFTITANIUMDIOXIDEPHOTOCATALYST -- Abstract -- 1.Introduction -- 2.SynthesisofTiO2Nanomaterials -- 2.1.MetalDopedTiO2 -- 2.2.Non-MetalDopedTiO2 -- 2.3.MixedDopantTiO2 -- 2.4.SynthesisofHybridTiO2 -- 2.5.TiO2onPolymerSupports -- 2.6.TiO2onBiopolymerSupported -- 3.PhotocatalyticActivity -- 3.1.TiO2Photocatalyst -- 3.2.MetalDopedTiO2Photocatalyst -- 3.3.Non-MetalDopedTiO2Photocatalyst -- 3.4.MixedDopedTiO2 -- 3.5.HybridPhotocatalyst -- 3.6.PolymerSupportedTiO2Photocatalysts -- 3.7.BiopolymerSupportedTiO2Photocatalysts -- 3.8.BiosynthesizedTiO2Photocatalysts -- Conclusion -- References -- Chapter6INSIGHTINTOBALL-MILLINGTITANIAANDAPPLICATIONS -- Abstract -- 1.Introduction -- 2.TitaniaNanomaterials -- 3.SizeReduction& -- Fineness -- 4.MillingofTitania -- 4.1.TiO2Nanopowder:Grinding -- 4.2.TiO2Nanopowder:Mechano-Chemical -- 4.3.TiO2:AqueousSuspension -- 5.MillingofTitaniawithDopingMaterials -- 5.1.DopingofTiO2andEnergyBand-Gap -- 5.2.NH3DopedTiO2:BallMilling -- 5.3.RedPhosphorousDopedTiO2 -- 5.4.TiO2:Photocatalysts -- 6.MillingofMaterialswithTiO2asDopant -- 6.1.TiO2:Bio-Applications -- 6.2.TiO2:ReinforcinginHAp -- 6.3.TiO2:Thermoelectrics -- 6.4.TiO2:IndustrialApplications -- 6.5.TiO2:CeramicProcessing -- Conclusion -- References -- Chapter7HUMANEXPOSURETOTITANIUMDIOXIDENANOPARTICLESANDCURRENTTOXICOLOGICALDATA:ANOVERVIEW. , Abstract -- 1.NanotechnologyandTiO2Nanoparticles -- 2.ToxicokineticsofTiO2NPswithintheHumanBody -- 3.ToxicityandGenotoxicityEvaluation -- 3.1.invitroStudies -- 3.2.invivoStudies -- 3.3.MainTiO2NPToxicityMechanismsIndentified -- 4.FuturePerspectives -- 5.Conclusion -- References -- Chapter8GROWTHANDAPPLICATIONOFTIO2NANOWIRES -- Abstract -- 1.Introduction -- 2.GrowthMethodsofTiO2Nanowires -- 2.1.Hydrothermal/SolvothermalMethods -- 2.2.Sol-GelMethod -- 2.3.MicrowaveAssistedMethods -- 2.4.SonochemicalMethod -- 2.5.ChemicalVaporDeposition -- 2.6.PhysicalVaporDeposition -- 3.ApplicationsofTiO2Nanowires -- 3.1.PhotocatalyticApplication -- 3.2.Dye-SensitizedSolarCells -- 3.3.HybridSolarCells -- 3.4.QuantumDotSolarCells -- 3.5.LithiumIonBatteries -- Conclusion -- References -- ABOUT THE EDITORS -- INDEX -- Blank Page.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 2908-2910 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A ferroelectric KNO3/silicone oil electrorheological (ER) fluid is introduced to investigate the conductivity dependence of the ER effect under dc electric fields where the ER effect is conductivity dominated. By measuring the temperature dependence of the shear stress across the Curie temperature of particles, the dependence of the ER effect on conductivity has been quantitatively obtained in experiments. There is a critical conductivity ratio Γc (or mismatch factor βc2): when Γ〈Γc, the shear stress increases with Γ; when Γ〉Γc, the shear stress decreases with Γ. An agreement is obtained between theory and experiment when Γ (or β2) is lower. In the higher Γ(or β2) range, the experimental data are not in agreement with the theoretical prediction and the interfacial effect should be taken into account. The experimental data are more reliable due to the same conditions, such as the chemical nature, the surfacial property of particles, and the interfacial property between particles and suspending liquid as well as the size and shape of the particles. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 653-655 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A ferroelectric TGS particle/silicone oil electrorheological (ER) fluid is introduced to investigate the dielectric dependence of the ER effect. The dielectric constant of ferroelectric changes violently with temperature at the Curie temperature (Tc). By measuring temperature dependence of shear stress across Tc, the effect of dielectric constant on shear stress can be directly obtained. All the results are more reliable due to the same conditions, such as size, shape, composition of particles, as well as the same chemical nature of particles and interface property between particles and liquid. The measurement was carried out under a high-frequency (1000 Hz) ac electric field where ER effect is dielectric constant dominated. For the first time, the dependence of the ER effect on dielectric mismatch has been quantitatively obtained experimentally. There is an obvious deviation of available theoretical calculations from our measured data. A more rigorous theoretical study should be developed to quantitatively interpret the relation of the shear stress and the permittivity mismatch factor. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 73 (1998), S. 1326-1328 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A type of water-free electrorheological (ER) material-complex strontium titanate (STO) was synthesized by means of modified sol–gel. The ER behavior of the suspensions of STO particles in silicone oil with a 37% volume fraction was investigated systematically under both dc and ac electric fields. It is found that this ER fluid has many advantages, such as long-term stability against sedimentation, strong ER effect at low electric field, and a wide operating temperature range. The frequency dependence of ER behavior was also studied and can be partly explained on the basis of dielectric measurement. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...