GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Tokyo :Springer Japan,
    Keywords: Nucleic acids. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (252 pages)
    Edition: 1st ed.
    ISBN: 9784431555766
    DDC: 572.8/8
    Language: English
    Note: Intro -- Preface -- Contents -- Part I: Bioinformatics and Other Methodologies for lncRNAs -- Chapter 1: Complexity of Mammalian Transcriptome Analyzed by RNA Deep Sequencing -- 1.1 Introduction -- 1.2 Definition and Types of Transcripts Encoded by the Genome -- 1.3 Transcriptome Discovery Technology Overview -- 1.3.1 Pre-NGS Era: From Genetic Studies and cDNA Isolation to Microarrays -- 1.3.2 High-Throughput Sequencing Platforms to Study Mammalian Transcriptomes -- 1.3.2.1 RNAseq -- 1.3.2.2 Cap-Analysis Gene Expression (CAGE) -- 1.3.2.3 Paired-End Tag (PET) Sequencing -- 1.3.2.4 Poly(A) Tail-Guided Sequencing (Poly(A)-Seq) -- 1.3.2.5 Further Technology Development -- 1.4 Downstream Applications and Result Overview -- 1.4.1 FANTOM Consortium -- 1.4.2 ENCODE Project -- 1.5 Future Directions in ncRNA-Omics -- 1.6 Conclusion -- References -- Chapter 2: Synthetic Strategies to Identify and Regulate Noncoding RNAs -- 2.1 Introduction -- 2.2 lncRNAs in Disease and Development -- 2.3 Identification and Analysis of Noncoding RNA -- 2.3.1 Synthetic Strategies to Profile RNA Secondary Structure -- 2.3.2 Genome-Wide Techniques to Profile the Structure and Expression of ncRNAs -- 2.4 ncRNA-Induced Triplex Formation and Biological Implications -- 2.5 Synthetic Ligands Targeting RNA Structures: Advances and Challenges -- 2.6 Future Perspectives -- References -- Part II: Atomic and Molecular Structures of lncRNAs -- Chapter 3: Structure and Interaction with Protein of Noncoding RNA: A Case for an RNA Aptamer Against Prion Protein -- 3.1 Introduction -- 3.2 Identification of R12 as an RNA Aptamer Against Bovine Prion Protein (bPrP) -- 3.3 Identification of Two Binding Sites for R12 in the N-Terminal Intrinsically Disordered Region of bPrP -- 3.4 Structure of an R12 Aptamer in a Free Form -- 3.5 Structure of an R12 Aptamer in Complex with a P16 Binding Peptide. , 3.6 Binding Mode of R12 with bPrP -- 3.7 Origin of High Affinity and Specificity of R12 to bPrP -- 3.8 Anti-prion Activity of R12 -- 3.9 Possible Therapeutic Application -- 3.10 Conclusions -- References -- Chapter 4: Characterization of G-Quadruplex DNA- and RNA-Binding Protein -- 4.1 Introduction -- 4.2 Roles of the G-Quadruplex Binding Protein, TLS/FUS, in Telomere -- 4.3 Engineering of the G-Quadruplex RNA-Binding Protein -- 4.4 Conclusions -- References -- Part III: Molecular Functions of lncRNAs -- Chapter 5: Initiation of Transcription Generates Divergence of Long Noncoding RNAs -- 5.1 Introduction -- 5.2 Cell-Type-Specific Expression of Long Noncoding RNAs and Their Possible Functions -- 5.3 Transcriptional Machinery of Eukaryotic Cells -- 5.4 Divergent Transcription from the Mammalian Genome -- 5.5 Molecular Mechanism of Divergent Transcription -- 5.6 "Chance and Necessity" in Origination of Diverse lncRNAs in the Human Genome -- 5.7 Taxonomy of lncRNAs -- 5.8 Conclusions and Future Prospects -- References -- Chapter 6: Beneath the Veil of Biological Complexity There Lies Long Noncoding RNA: Diverse Utilization of lncRNA in Yeast Genomes -- 6.1 Introduction -- 6.2 lncRNAs of Budding and Fission Yeasts -- 6.3 Epigenetic Regulation of Gene Expression via lncRNA Transcription -- 6.3.1 Co-transcriptional Regulation of Histone Modifications -- 6.3.2 Transcriptional Interplay Between mRNAs and lncRNAs -- 6.4 Noncoding Transcripts Required for Chromosome Integrity -- 6.4.1 Centromeric Transcripts -- 6.4.2 Telomeric Transcripts -- 6.5 Coordinated Transcription of mRNA and lncRNA in Response to Environmental Stimuli -- 6.6 Perspectives -- References -- Chapter 7: Long Noncoding RNAs as Structural and Functional Components of Nuclear Bodies -- 7.1 Introduction -- 7.2 LncRNAs as Structural Components of Nuclear Bodies. , 7.2.1 NEAT1 lncRNA Functions as a Platform for Paraspeckle Formation -- 7.2.2 The Biological Functions of NEAT1 lncRNA -- 7.2.3 Intergenic Spacer (IGS) lncRNAs Are Required for the Formation of Nucleolar Detention Centers (DCs) -- 7.2.4 The Roles of Satellite III (satIII) lncRNAs in Nuclear Stress Body Formation -- 7.2.5 Histone mRNA Precursors in Histone Locus Bodies (HLBs) -- 7.3 LncRNAs as Functional Components of Nuclear Bodies -- 7.3.1 Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) lncRNA in Nuclear Speckles and Taurine Upregulated Gene 1 (TUG1) lncRNA in Polycomb Bodies -- 7.3.2 Gomafu lncRNA Plays a Role in Splicing Factor 1 Retention -- 7.3.3 Prader-Willi Syndrome (PWS) Region Small Nucleolar lncRNAs (sno-lncRNAs) Function as a Molecular Sink for Splicing Factor -- 7.3.4 Colon Cancer Associated Transcript 1 (CCAT1) lncRNA -- 7.3.5 The meiRNA lncRNA Controls Meiosis Initiation in Schizosaccharomyces pombe -- 7.4 Conclusions and Perspectives -- References -- Part IV: Biological Actions of lncRNAs -- Chapter 8: Long Noncoding RNA in Epigenetic Gene Regulation -- 8.1 Introduction -- 8.2 Genomic Imprinting Cluster -- 8.2.1 Igf2 Imprinting Cluster -- 8.2.2 Igf2r Imprinting Cluster -- 8.2.3 Kcnq1 Imprinting Cluster -- 8.2.4 Gnas Imprinting Cluster -- 8.2.5 Dlk1-Dio3 Imprinting Cluster -- 8.2.6 PWS/AS Imprinting Cluster -- 8.3 Conclusions and Future Directions -- References -- Chapter 9: Mechanisms of Long Noncoding Xist RNA-­Mediated Chromosome-Wide Gene Silencing in X-Chromosome Inactivation -- 9.1 Introduction -- 9.2 X-Inactivation: Paradigm of lncRNA-Regulated Gene Regulation -- 9.3 Epigenetic Modifications on the Inactive X-Chromosome -- 9.4 Functional Domains of Xist RNA Required for Localization of Xist RNA on the Xi -- 9.5 hnRNP U as Anchor Points for Xist RNA on the Xi. , 9.6 Mechanism of Xist RNA-Induced Gene Silencing in Cis -- 9.7 Mechanism of Chromosome-Wide Spreading of Gene Silencing Across the Inactive X-Chromosome -- 9.8 Conclusions -- References -- Part V: Potential Outcomes for Clinical Medicine -- Chapter 10: Regulation of pRB and p53 Pathways by the Long Noncoding RNAs ANRIL, lincRNA-p21, lincRNA-RoR, and PANDA -- 10.1 Introduction -- 10.2 ANRIL, a Long Noncoding RNA in the INK4 Locus -- 10.2.1 ANRIL and INK4 Locus -- 10.2.2 Transcriptional Regulation of the INK4 Locus by ANRIL -- 10.2.3 Trans-acting Gene Regulation by ANRIL -- 10.2.4 Regulation of ANRIL -- 10.2.5 Association of ANRIL with Disease -- 10.3 lncRNAs Induced by p53 -- 10.3.1 lincRNA-p21 -- 10.3.2 PANDA -- 10.3.3 lincRNA-RoR -- 10.4 Conclusion -- References -- Chapter 11: The Role of Androgen-Regulated Long Noncoding RNAs in Prostate Cancer -- 11.1 Introduction -- 11.1.1 The Emergence of Long Noncoding RNAs in Prostate Cancer Biology -- 11.1.2 Prostate Cancer-Associated Noncoding RNAs -- 11.1.3 Significance of Androgen Signaling in Prostate Cancer -- 11.1.3.1 The Structure and Mechanisms of Action of the Androgen Receptor (AR) -- 11.1.3.2 The Roles of AR in Prostate Cancer Progression -- 11.1.3.3 Model Cells for Investigating AR Signaling in CRPC -- 11.1.4 Diverse Functions of Antisense ncRNAs -- 11.1.5 Global Analysis of the AR-Mediated Transcriptional Program -- 11.1.6 Integrative Analysis to Discover the Androgen-­Regulated Transcriptional Program -- 11.2 Identification and Androgen-Regulation of Long Noncoding RNA, CTBP1-AS -- 11.2.1 An Overview of Our Study -- 11.2.2 Cloning and Detection of CTBP1-AS -- 11.2.3 Clinical Significance of CTBP1-AS in Prostate Cancer -- 11.2.3.1 CTBP1-AS Is Upregulated in Prostate Cancer -- 11.2.3.2 Loss of CTBP1 Is Associated with Poor Prognosis of Prostate Cancer Patients. , 11.2.4 CTBP1 Interacts with AR as a Co-repressor -- 11.3 Potential Therapeutic Target of Androgen-Regulated Long Noncoding RNA in Prostate Cancer -- 11.3.1 CTBP1-AS Activates AR Signaling -- 11.3.2 Xenograft Model of Prostate Cancer -- 11.4 Investigation of Nuclear Function of Androgen-­Regulated lncRNA -- 11.4.1 CTBP1-AS Induces Histone Deacetylation at CTBP1 Promoter for Transcriptional Repression -- 11.4.2 lncRNA Associated Protein -- 11.4.2.1 Identification of PSF as an Interacting Partner of CTBP1-AS -- 11.4.2.2 Identification of RNA-Associated Proteins by Mass Spectrometry -- 11.5 Functional Analysis of lncRNA -- 11.5.1 Cell Cycle Analysis -- 11.5.1.1 PSF Downstream Signals Regulate Prostate Cancer Cell Cycle Progression -- 11.5.2 Genome-Wide Transcriptional Program -- 11.5.2.1 CTBP1-AS and PSF Function Cooperatively to Modulate Global Androgen Signaling -- 11.5.2.2 ChIP-Sequence Analysis to Determine PSF-Binding Regions -- 11.6 Summary and Future Plan -- 11.6.1 Summary of CTBP1-AS Function -- 11.6.2 Usage of Androgen-Regulated lncRNAs for Therapeutic Targets and Biomarkers of CRPC -- References -- Chapter 12: Macrophage Activation as a Model System for Understanding Enhancer Transcription and eRNA Function -- 12.1 Macrophage Activation as a Model System -- 12.2 Studying Enhancers with High-Throughput Sequencing -- 12.3 Transcription at Enhancers -- 12.4 An Order of Events for Enhancer Transcription -- 12.5 Enhancer Transcription as a Marker of Activity -- 12.6 The Functionality of eRNAs -- 12.7 Concluding Remarks -- References -- Chapter 13: Long Noncoding RNA Functions as a Regulator for Steroid Hormone Receptor-­Related Breast and Prostate Cancers -- 13.1 Introduction -- 13.2 Steroid Hormone Receptor Associated lncRNAs -- 13.2.1 SRA -- 13.2.2 Gas5 -- 13.2.3 PCGEM1 and PRNCR1 -- 13.3 eRNA. , 13.4 Other Functional Breast/Prostate Cancer Related lncRNAs.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Molecular biology. ; Biophysics. ; Medicine ; Biology ; Cytology. ; Biochemistry. ; Non-coding RNA.
    Description / Table of Contents: Chapter 1. FUS aggregation by shear stress on pipetting and its suppression by non-coding RNA -- Chapter 2. Basics and recent advances in computational and theoretical methods for understanding the liquid-liquid phase separation -- Chapter 3.Promotion of liquid-liquid phase separation by G-quadruplex DNA and RNA -- Chapter 4. Phase regulation by chaperons -- Chapter 5. Regulation of aggregation of intrinsically disordered protein through phase separation: Risk management of phase separation -- Chapter 6. Molecular mechanisms of phase transition/separation of protein low-complexity sequences -- Chapter 7. Winding and Tangling. An Initial Phase of Membrane-less Organelle Formation (from a viewpoint of Cajal Bodies) -- Chapter 8. Formation and function of phase separated nuclear bodies directed by architectural noncoding RNA -- Chapter 9. Force-dependent remodeling of cell-to-cell adhesion through the regulation of phase separation -- Chapter 10. Neuronal RNA granules: Phase separation, dynamics, and higher brain functions -- Chapter 11. Liquid-liquid phase separation in structure and function of nuclear pore complex -- Chapter 12. Phase Separation Orchestrates Cancer Signaling: Biomolecular condensates as a promising target for cancer therapy -- Chapter 13. Regulatory interaction of intrinsically disordered regions of pathogenic proteins in neurodegenerative diseases -- Chapter 14. Functional properties of phase separation and intranuclear complex of FUS in the pathogenesis of ALS/FTLD -- Chapter 15. Functional responses of microglia to amyloid plaques -- Chapter 16. Emerging role of phage separation in COVID-19.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VIII, 318 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9789819948864
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Proteins with expanded polyglutamine repeats cause Huntington's disease and other neurodegenerative diseases. Transcriptional dysregulation and loss of function of transcriptional co-activator proteins have been implicated in the pathogenesis of these diseases. Huntington's disease is caused by ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The peroxisome proliferator-activated receptor-γ (PPAR-γ) is a ligand-dependent transcription factor that is important in adipocyte differentiation and glucose homeostasis and which depends on interactions with co-activators, including steroid receptor co-activating factor-1 (SRC-1). ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Thyroid-hormone and retinoic-acid receptors exert their regulatory functions by acting as both activators and repressers of gene expression. A nuclear receptor co-repressor (N-CoR) of relative molecular mass 270K has been identified which mediates ligand-independent inhibition ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] POU-domain proteins, such as the pituitary-specific factor Pit-1, are members of the homeodomain family of proteins which are important in development and homeostasis, acting constitutively or in response to signal-transduction pathways to either repress or activate the expression of specific ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Retinoic-acid receptor-α (RAR-α) and peroxisome proliferator-activated receptor-γ (PPAR-γ) are members of the nuclear-receptor superfamily that bind to DNA as heterodimers with retinoid-X receptors (RXRs),. PPAR–RXR heterodimers can be activated by PPAR or RXR ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The specific contributions of the RAR and RXR to ligand-dependent transcription from promoters containing direct repeat elements spaced by 1 or 5 base pairs (bp), were determined in CV1 cells using the RAR-specific ligand TTNPB16, and the RXR-specific ligand LG69 (Fig. 1). In the absence of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The differential response of RAR to activating ligands on DR +1 and DR + 5 response elements result from opposite polarities of heterodimer binding to the asymmetrically oriented half-sites6. On DR + 5 sites, RAR/RXR heterodimers bind such ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...