GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Materials-Congresses. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (448 pages)
    Edition: 1st ed.
    ISBN: 9783642804786
    DDC: 620.11
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Nanosilicon. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (385 pages)
    Edition: 1st ed.
    ISBN: 9780080549514
    DDC: 620.193
    Language: English
    Note: Front Cover -- Nanosilicon -- Copyright Page -- Contents -- Preface -- Chapter 1 Silicon Nanoparticles: New Photonic and Electronic Material at the Transition Between Solid and Molecule -- 1.1 Introduction -- 1.2 Synthesis -- 1.2.1 Physical Techniques -- 1.2.2 Physico-Chemical Techniques -- 1.2.3 Chemical Techniques -- 1.2.4 Electrochemical Techniques -- 1.2.5 Discretely Sized Si Nanoparticles -- 1.3 Functionalization -- 1.3.1 Initial Surface Condition -- 1.3.2 Alkylated Particles -- 1.3.3 Aggregation and Solubility -- 1.3.4 Stability in Acid -- 1.4 Spectroscopic characterization -- 1.4.1 Fourier Transform Infrared Spectroscopy -- 1.4.2 Nuclear Magnetic Resonance -- 1.4.3 Gel Permission Chromotography -- 1.4.4 X-Ray Photospectroscopy -- 1.4.5 Auger Electron Spectroscopy -- 1.4.6 Transmission Electron Microscopy -- 1.5 Optical properties -- 1.5.1 PL and Detection of Single Nanoparticles -- 1.5.2 PL Lifetime -- 1.5.3 Cathodoluminescence and Electroluminescence -- 1.5.4 Photostability Under UV and Infrared Radiation -- 1.6 Reconstitution of particles in films -- 1.6.1 Precipitation Spray -- 1.6.2 Electrodeposition: Composite Films of Metal and Nanoparticles -- 1.6.3 Silicon Sheet Roll into Tubes -- 1.6.4 Self-Assembly -- 1.7 Nonlinear optical properties -- 1.7.1 Stimulated Emission -- 1.7.2 Second Harmonic Generation -- 1.7.3 Gain and Optical Nonlinearity -- 1.8 Effect of functionalization on emission -- 1.9 Structure of particles -- 1.9.1 Luminescence Models -- 1.9.2 Computational Methods for Electronic Structure of Nanoclusters -- 1.9.3 Prototype of Hydrogenated Particles (Supermolecule) -- 1.9.4 H[sub(2)]O[sub(2)] Effect on Surface Reconstruction -- 1.9.5 Novel Si-Si Bonds (Molecular-Like Behaviour) -- 1.9.6 Structural Stability of the Prototype -- 1.9.7 Material Properties: Dielectric Constant and Effective Mass. , 1.9.8 Excited States (Molecular-Like Bands) -- 1.9.9 Collective Molecular Surface -- 1.9.10 Phonon Structure: Collective Molecular Vibration Modes -- 1.9.11 Molecular-Like Emission: Direct versus Indirect Process -- 1.9.12 X-Ray Form Factors -- 1.9.13 Effect of Termination on the Band Gap -- 1.10 Device applications -- 1.10.1 Photoelectric Conversion/UV Photodetector -- 1.10.2 Metal Oxide Silicon Memory Devices -- 1.10.3 Biophotonic Imaging -- 1.10.4 Amperometric Detection -- 1.10.5 Nanosolar Cell -- 1.10.6 Nanoink Printing -- 1.10.7 Single Electron Transistor Devices -- 1.11 Conclusion -- Acknowledgements -- References -- Chapter 2 Cluster Assembled Silicon Networks -- 2.1 Introduction -- 2.2 Isolated Silicon Clusters -- 2.2.1 Small Si[sub(N)] Clusters (N & -- lt -- 14) -- 2.2.2 Medium-Sized Clusters (20 & -- lt -- N & -- lt -- 100): the Case of Si[sub(33)] -- 2.2.3 Large Clusters (N & -- gt -- 100) -- 2.3 Si-Cluster-Assembled Materials -- 2.3.1 Introduction -- 2.3.2 Si-Cluster-Assembled Films -- 2.3.3 Bulk Si-Cluster-Assembled Materials from Fullerenes: Clathrate Phases -- 2.4 Conclusion -- Acknowledgements -- References -- Chapter 3 Metal Encapsulated Clusters of Silicon: Silicon Fullerenes and Other Polyhedral Forms -- 3.1 Introduction -- 3.2 Clusters of Elemental Silicon -- 3.3 Metal Encapsulation: A New Paradigm -- 3.3.1 Silicon Fullerenes -- 3.3.2 Metal Size Dependent Encapsulated Silicon Structures -- 3.3.3 The Electronic Factor and the Isolated Rhombus Rule -- 3.3.4 Reactivity as a Probe of Metal Encapsulation -- 3.3.5 Vibrational Properties -- 3.3.6 Empty and Endohedral Hydrogenated Fullerene Cages of Silicon -- 3.3.7 Absorption Spectra -- 3.3.8 Magnetic Clusters of Silicon -- 3.4 Summary -- Acknowledgments -- References -- Chapter 4 Porous Silicon - Sensors and Future Applications -- 4.1 Introduction -- 4.2 Kinds of PS. , 4.2.1 Pore Structure in PS -- 4.2.2 PL from PS -- 4.3 PS sensors -- 4.3.1 PS Humidity Sensors -- 4.3.2 PS Chemical Sensors -- 4.3.3 PS Gas Sensors -- 4.4 Future technology -- 4.4.1 Nanoparticle Photocatalytic Coating of PS -- 4.4.2 Lithium Electrolyte-Based PS Microbattery Electrodes -- 4.5 Conclusions -- References -- Chapter 5 Silicon Nanowires and Nanowire Heterostructures -- 5.1 Introduction -- 5.2 Silicon nanowires -- 5.2.1 Rational Synthesis and Structural Characterization of SiNW -- 5.2.2 Electronic Properties of SiNWs -- 5.2.3 SiNWs for Nanoelectronics -- 5.2.4 Large-Scale Hierarchical Organization of SiNW Arrays -- 5.2.5 SiNWs as Nanoscale Sensors -- 5.3 SiNW heterostructures -- 5.3.1 NiSi/SiNW Heterostructures -- 5.3.2 Modulation Doped SiNWs -- 5.3.3 Branched and Hyper-Branched SiNWs -- 5.4 Summary -- References -- Chapter 6 Theoretical Advances in the Electronic and Atomic Structures of Silicon Nanotubes and Nanowires -- 6.1 Introduction -- 6.2 Computational approach -- 6.3 Silicon nanotubes -- 6.3.1 Metal Encapsulated Nanotubes of Silicon -- 6.3.2 Electronic Structure and Bonding Nature -- 6.3.3 Magnetism in Metal Encapsulated SiNTs -- 6.4 Germanium nanotubes -- 6.4.1 Metallic and Semiconducting Nanotubes of Ge -- 6.5 Silicon nanowires -- 6.5.1 Non-Crystalline Pristine SiNWs -- 6.5.2 Crystalline Pristine SiNWs -- 6.5.3 Band Structure of SiNWs -- 6.6 Hydrogenated nanowires -- 6.6.1 Electronic Structure of Hydrogenated SiNWs -- 6.6.2 Effects of Doping and H Defects -- 6.7 Nanowire superlattices -- 6.8 Conclusion and perspective remarks -- Acknowledgements -- References -- Chapter 7 Phonons in Silicon Nanowires -- 7.1 Introduction -- 7.2 Theoretical Models for Confined Phonons -- 7.2.1 Lattice Dynamics of Si Nanowires -- 7.2.2 The Richter Model for Raman Scattering from Confined Phonons. , 7.3 Experimental Evidence of Confined Phonons in Silicon -- 7.3.1 Acoustic Phonons -- 7.3.2 Optical Phonons -- 7.3.3 Thermal Conductivity -- 7.4 Effects of Inhomogeneous Laser Heating on Raman Lineshape -- 7.4.1 Stokes-AntiStokes Ratio as a Probe of Laser Heating of Si Nanowires -- 7.4.2 Evolution of the Raman Band Asymmetry with Laser Flux -- 7.4.3 Modification of Richter's Lineshape Function to Include Inhomogeneous Heating -- 7.5 Summary and Conclusions -- Acknowledgements -- References -- Chapter 8 Quasi-One-Dimensional Silicon Nanostructures -- 8.1 Introduction -- 8.2 Silicon nanowires -- 8.2.1 Pentagonal Silicon Wires -- 8.2.2 Hydrogen-Passivated Silicon Wires -- 8.3 Metal silicide -- 8.3.1 Endohedral Silicon Nanotubes -- 8.3.2 Yttrium Silicide NW -- 8.3.3 Energy Decomposition -- References -- Acknowledgements -- Chapter 9 Low-dimensional Silicon as a Photonic Material -- 9.1 The need of a Silicon-Based Photonics -- 9.2 Various Approaches to a Silicon Light Source -- 9.2.1 Silicon Raman Laser -- 9.2.2 Bulk Silicon Light Emitting Diodes -- 9.3 Optical Gain in Silicon Nanocrystals -- 9.3.1 CW and TR Measurements -- 9.3.2 Gain Model: Four-Level System -- 9.3.3 Other Key Ingredients -- 9.4 Er Coupled Si Nanocrystal Optical Amplifiers -- 9.4.1 E[sup(3+)] Internal Transition -- 9.4.2 E[sup(3+)] and Si-nc Interactions -- 9.4.3 E[sup(3)] Cross Sections -- 9.5 Conclusions -- Acknowledgements -- References -- Chapter 10 Nanosilicon Single-Electron Transistors and Memory -- 10.1 Introduction -- 10.1.1 Single-Electron and Quantum Confinement Effects -- 10.2 Nanosilicon SETs -- 10.2.1 Conduction in Continuous Nanocrystalline Silicon Films -- 10.2.2 Silicon Nanowire SETs -- 10.2.3 Point-Contact SETs: Room Temperature Operation -- 10.2.4 "Grain-Boundary" Engineering -- 10.2.5 Single-Electron Transistors Using Silicon Nanocrystals. , 10.2.6 Comparison with Crystalline Silicon SETs -- 10.3 Electron Coupling Effects in Nanosilicon -- 10.3.1 Electrostatic Coupling Effects -- 10.3.2 Electron Wavefunction Coupling Effects -- 10.4 Nanosilicon memory -- References -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X -- Y -- Z.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Metals. ; Nanostructured materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (406 pages)
    Edition: 1st ed.
    ISBN: 9789811997297
    DDC: 620.115
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Ribosomes. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (298 pages)
    Edition: 1st ed.
    ISBN: 9780128167342
    DDC: 571.6/58
    Language: English
    Note: Intro -- Emerging Concepts in Ribosome Structure, Biogenesis, and Function -- Copyright -- Contents -- Contributors -- Chapter 1: Introduction to ribosome factory, origin, and evolution of translation -- What are ribosomes? -- Basic components and structure of the ribosome -- Functions of ribosome -- Ribosome biogenesis and assembly -- Ribosomal gene mutations and ribosomopathies -- Inhibition of ribosome biogenesis -- Summary and conclusions -- References -- Chapter 2: Ribosome structure -- Introduction -- Structure of prokaryotic ribosome -- Structure of eukaryotic ribosome -- Novel features of the 80S Ribosome's structure -- Eukaryote-specific protein tails -- Expansion segments -- Intersubunit bridges -- Structure of mitochondrial ribosome -- Summary and conclusions -- References -- Chapter 3: rDNA gene structure, transcription, and its coregulation -- Introduction -- Organization and regulation of ribosomal RNA genes -- Processing and maturation of pre-rRNA -- Organization and regulation of RNA pol III promoter -- Summary and conclusions -- References -- Chapter 4: Ribosome proteins-Their balanced production -- Introduction -- Structure of ribosomes -- Ribosomal proteins -- Nomenclature of RPs -- The function of ribosomal proteins -- The 40S small subunit ribosomal proteins -- The 60S large subunit ribosomal proteins -- Eukaryotic mitochondrial ribosome or mitoribosomes -- Extra ribosomal functions of ribosomal proteins -- Balanced production of RPs -- At the transcription level -- At the translational level -- At the posttranslational level -- Summary and conclusions -- References -- Chapter 5: Ribosome diversity -- Introduction -- Variation in r-protein complement -- Paralogues of r-proteins -- R-protein posttranslational modifications -- Ribosome-associated factors -- Contribution of rRNA alternatives in ribosome diversity. , Modifications of rRNA contribute to ribosome diversity -- Special ribosomes of mitochondria -- Congenital anomalies and mutations of ribosomal proteins -- Summary and conclusions -- References -- Chapter 6: Ribosome cycle-Assembly, degradation, and recycling -- Introduction -- Ribosome assembly -- The pathways and steps of ribosome assembly -- Assembly of small subunit of ribosome (40S subunit) -- Assembly of large subunit of ribosome (60S subunit) -- Degradation of the ribosome and ribosomal proteins -- Ubiquitination-Selective degradation of ribosomal proteins -- Ribophagy-Selective degradation of ribosome -- Ribosome recycling -- Splitting of 80S ribosome -- ABCE1-dependent 80S ribosome splitting -- Initiation of translation by post-TCs -- Summary and conclusions -- References -- Chapter 7: Ribosomal biogenesis in eukaryotes -- Introduction -- Yeast as an eukaryotic model to study ribosome biogenesis -- Preinitiation complex formation -- Control of rDNA transcription -- Processing of pre-rRNA -- Coordination of folding and processing of pre-rRNA -- Roles of the ribosomal proteins -- Role of ribosome assembly factors -- Maturation of ribosomal subunits -- Maturation of the 40S subunit -- Maturation of the pre-60S subunit -- Modifications of pre-RNA -- snoRNPs and rRNA modifications -- Summary and conclusions -- References -- Further reading -- Chapter 8: Ribosome biogenesis in prokaryotes -- Introduction -- Escherichia coli as a model organism to study ribosome biogenesis -- r-RNA gene structure, transcription, and posttranscriptional processing -- Regulation of rrn expression -- Structure of the ribosomal protein-coding genes, the operons and regulation of expression -- Modification of RPs -- Assembly of ribosome -- Assembly of 30S subunit -- Assembly of 50S subunit. , Differences in protein composition of the ribosome from exponential and stationary bacterial growth phases -- Role of ions in ribosome assembly -- Proteins facilitating ribosome assembly -- RNA helicases -- Chaperones -- GTPases -- Association and dissociation of ribosomal subunits -- Ribosome degradation, modifications, and recycling -- Ribosomal rejuvenation -- Ribosomal quality control -- Rescue of stalled ribosomes on mRNAs with defective or no stop codon -- Ribosome biogenesis in archaebacteria -- Summary and conclusions -- References -- Chapter 9: Translation-Process and control -- The process of translation -- Translation initiation -- Recycling of ribosomes -- Formation of 43S complex -- Initiator aa-tRNA recognition -- Formation of the eIF2-GTP ternary complex -- Attachment of 43S complexes to mRNA -- Recognition of initiation codon -- Scanning model -- Ribosome scanning of mRNA 5 ′ UTRs -- Noncanonical translation initiation in eukaryotes -- Internal ribosome entry sites -- Cellular IRESs -- Ribosomal shunting -- Joining of subunits -- Reinitiation, initiation at non-AUG codons and leaky scanning -- Translation elongation -- Decoding of mRNA -- EF-Tu in translation elongation -- Peptide bond transfer and translocation -- The hybrid state models of translocation -- " α -ϵ" model for translocation -- Termination of translation -- Control of translation -- Aminoacyl tRNA and translation elongation -- Modifications in tRNAs -- Codon usage bias and stability of transcripts -- Ribosome stalling -- Ribosome profiling -- Application of ribosome profiling -- Insights into mechanism of translation -- Insights into translation of noncoding RNAs, especially lncRNA -- Expansion of translatome -- Limitations of ribosome profiling -- References -- Chapter 10: Inhibitors of ribosome biogenesis in prokaryotes and eukaryotes -- Introduction. , Prokaryotic ribosome biogenesis and inhibitors -- Ribosome biosynthesis and assembly -- Inhibitors of ribosome biogenesis in prokaryotes -- Ribosome biogenesis can be the target of cold stress -- Lamotrigine is the most promising cold sensitive chemical compound -- Antibiotics that target ribosome biogenesis -- Eukaryotic ribosome biogenesis and inhibitors -- Ribosome biosynthesis -- Ribosome biogenesis inhibitors-Chemical probes -- Examples of inhibitors -- Rbin-1 -- Diazaborine -- Ribosome biogenesis inhibitors and cancer -- Ribosome biogenesis has a highly variable turnaround in cancer cells -- Conclusions -- References -- Chapter 11: Ribosomopathies-A tree of pathologies with many roots and branches! -- Introduction -- Diamond-Blackfan anemia -- Other ribosomopathies -- Suspected ribosomopathies -- Is cancer a ribosomopathy? -- Conclusions -- References -- Chapter 12: Ribosomal profiling-Diversity and applications -- Introduction -- Tools and techniques of ribosome profiling -- Sample preparation -- RNase protection assay -- Isolation of ribosome footprints -- High throughput sequencing -- Bioinformatics analysis -- Other critical parameters -- Quality control of mRNA -- Canonical decay of mRNA and connections to translation elongation -- Nonsense-mediated decay of mRNA -- No-go decay of mRNAs with disruptions within the ORF -- Nonstop decay of mRNAs -- Degradation of truncated mRNAs -- Understanding the mechanism and regulation of translation -- Ribosome profiling of initiating ribosomes -- Ribosome profiling of elongating ribosomes -- Ribosome profiling of translation termination -- Diversity and applications of ribosome profiling -- Effect of stress on translation -- Cell cycle and translation regulation -- Ribosome profiling during viral infections -- Ribosome profiling during parasitic infections -- Ribosome profiling in Escherichia coli. , Summary and conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Nanofibers. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (382 pages)
    Edition: 1st ed.
    ISBN: 9783030799793
    Series Statement: Springer Series on Polymer and Composite Materials Series
    DDC: 620.5
    Language: English
    Note: Intro -- Preface -- Contents -- About the Editors -- Production and Application of Biodegradable Nanofibers Using Electrospinning Techniques -- 1 Introduction -- 2 Biodegradation -- 3 Electrospinning -- 3.1 Solvents -- 4 Biodegradable Natural and Man-Made Polymers -- 5 Electrospinning Biodegradable Polymers -- 5.1 Electrospinning Collagen -- 5.2 Electrospinning Gelatin -- 5.3 Electrospinning Elastin -- 5.4 Electrospinning Chitosan -- 5.5 Electrospinning Silk Fibroin -- 5.6 Electrospinning Alginate -- 5.7 Electrospinning Poly(Glycolic Acid) (PGA) -- 5.8 Electrospinning Poly(Lactic-Co-Glycolic Acid) (PLGA) -- 5.9 Electrospinning Polycaprolactone (PCL) -- 5.10 Electrospinning Poly(L-Lactide-Ε-Caprolacton) (PLLA-CL) -- 5.11 Electrospinning PVA -- 5.12 Electrospinning PEO -- 6 Conclusion -- References -- Electrospun Nanofibers for Energy and Environment Protection -- 1 Introduction -- 2 Electrospun Nanofibers for Energy Applications -- 2.1 Charge Storage Mechanism in Electrospun Nanofibers -- 3 Dye-Sensitized Solar Cells -- 3.1 DSSC Construction, Assembly, and Operating Principle -- 4 Lithium (Li)-Ion Batteries -- 4.1 Assembly of Lithium Ion and Charge Storage Mechanism -- 5 Supercapacitors (SCs) -- 5.1 Construction, Assembly, and Working of SC -- 6 Fuel Cell -- 6.1 Fuel Cell Assembly and Their Charge Storage Mechanism -- 7 Electrospinning Techniques -- 8 Electrospun Nanofibers for Environmental Protection -- 9 Conclusion -- References -- Polymer Nanofibers via Electrospinning for Flexible Devices -- 1 Introduction -- 2 Electrospun Polymer Nanofibers -- 3 Application of Electrospun Polymer Nanofibers for Flexible Devices -- 3.1 Light-Emitting Diodes (LEDs) -- 3.2 Sensors -- 3.3 UV Photodetectors -- 3.4 Transparent Electrodes -- 3.5 Nanogenerators -- 4 Conclusions -- References -- Electrospun Nanofibers for Wastewater Treatment -- 1 Introduction. , 2 Electrospinning -- 2.1 Electrospinning Process -- 2.2 Effecting Parameter -- 2.3 Electrospun Nanofibers with Structure -- 3 Nanofibers for Wastewater Treatment -- 3.1 Polyacrylonitrile -- 3.2 Polyvinyl Alcohol -- 3.3 Polyamide -- 3.4 Some Other Polymer-Based Nanofibers -- 4 Applications of Electrospinning Nanofibers -- 5 Conclusions and Outlooks -- References -- Electrospun Nanofibers for Coating and Corrosion -- 1 Introduction -- 2 Techniques of Nanostructure Coating -- 2.1 Atomic Layer Deposition -- 2.2 Laser Thermal Spray-Coating -- 2.3 Sol-Gel Coating -- 2.4 Laser Ablation Coating -- 2.5 Sputter Deposition -- 2.6 Physical Vapor Deposition (PVD) -- 2.7 Chemical Vapor Deposition (CVD) -- 2.8 Chemical Bath Deposition -- 2.9 Ionized Cluster Beam Deposition -- 3 Electrospun Nanofibers Coating -- 4 Corrosion -- 4.1 Corrosion Resistance -- 4.2 Corrosion Measurement -- 4.3 Corrosion Inhibitor -- 5 Electrospun Nanofibers Coating for Corrosion Protection -- 6 Conclusion -- References -- Polymer Nanofibrous and Their Application for Batteries -- 1 Introduction -- 1.1 Basics of Battery Electrochemistry -- 1.2 Factors Affecting the Cell Potentials and Current Density -- 1.3 Basics of Electrospinning Technique -- 2 Applications of Electrospun Fibers in Batteries -- 2.1 Electrospun Fibers in Metal-Air Batteries -- 2.2 Electrospun Fibers in Metal-Ion Batteries -- 3 Conclusion and Outlook -- References -- Electrospinning of Lignin Nanofibers for Drug Delivery -- 1 Introduction -- 2 Lignin -- 2.1 Lignin Recovery -- 2.2 Kraft Process -- 2.3 Dilute Acidic -- 2.4 Alkaline Process -- 2.5 Organosolv Process -- 3 Types of Lignin and Their Effect on Health -- 3.1 Impact of Lignin or Lignin Derivatives On Pharmacological Activities -- 3.2 Lignin Carbon Fibers -- 4 Electrospinning -- 5 Lignin-Derived Carbon Nanofibers -- 6 Biomedical Application of Electrospun Nanofibers. , 6.1 Drug Delivery -- 6.2 Electrospun Lignin-Based Nanocomposites for Drug Delivery -- 7 Conclusions and Prospects -- References -- 1D Spinel Architectures via Electrospinning for Supercapacitors -- 1 Introduction -- 2 Conclusion and Future Outlook -- References -- Polymer and Ceramic-Based Hollow Nanofibers via Electrospinning -- 1 Introduction -- 2 Electrospinning-Based Methods for the Production of Hollow Nanofibers -- 2.1 Electrospinning with a Single Spinneret -- 2.2 Microfluidic Electrospinning -- 2.3 Coaxial Electrospinning with a two-Capillary Spinneret -- 2.4 Triaxial Electrospinning -- 2.5 Emulsion Electrospinning -- 3 Hollow Nanofibers Based on Different Materials -- 3.1 TiO2 Hollow NFs -- 3.2 Cobalt Ferrite (CoFe2O4) and Strontium Ferrite (SrFe12O19)-Based Hollow NFs -- 3.3 V2O5 and Au/V2O5 NFs -- 3.4 LiFePO4 and Porous Alumina Hollow NFs -- 3.5 CuO and Cu-Based Hollow NFs -- 3.6 SnO2-ZnO and γ-Al2O3 Hollow NFs -- 3.7 VN and MnO2 Nanosheets/Cobalt Doped Carbon-Based Hollow NFs -- 3.8 Indium Oxide-Based Hollow NFs for the Detection of Acetone -- 3.9 Praseodymium-Doped BiFeO3 Hollow NFs for Formaldehyde Sensor -- 4 Potential Applications of Polymer and Ceramic-Based Hollow NFs -- 5 Conclusion -- References -- Surface Engineering of Nanofiber Membranes via Electrospinning-Embedded Nanoparticles for Wastewater Treatment -- 1 Introduction -- 2 Basics of Electrospinning -- 3 Synthesis of Au or Ag Nanoparticles -- 4 Electrospun Polymer Nanofibers Embedded with Different Materials -- 4.1 Electrospun Polymer Nanofibers Embedded with Ag and Au Nanoparticles -- 4.2 Electrospun Polymer Nanofibers Embedded with Carbon Nanoparticles -- 4.3 Electrospun Polymer Nanofibers Embedded with Metal Oxide Nanoparticles -- 5 Surface Modification of Nanofiber Membranes -- 6 Applications of Nanofiber Membranes for Wastewater Treatment. , 6.1 Nanofibers in Microfiltration -- 6.2 Nanofibers in Ultrafiltration -- 6.3 Nanofiltration -- 6.4 Electrospun Noble Metal (Ag, Au, and Pt) Nanofiber Composites for Wastewater Treatment -- 6.5 Electrospun Carbon Nanofiber (CNF) Composites for Wastewater Treatment -- 6.6 Electrospun Metal Oxide Polymer Composites for Wastewater Treatment -- 7 Conclusions and Outlook -- References -- Functionalized Natural Polymer-Based Electrospun Nanofiber -- 1 Introduction -- 2 Overview of Nanofiber Materials -- 2.1 Properties of Nanofiber Materials -- 3 Electrostatic Spinning Technology -- 3.1 Concepts of Electrospinning -- 3.2 Influencing Factors of Electrospinning Nanofibers -- 3.3 Electrostatic Spinning Device -- 3.4 Formation Mechanism of Electrospinning Nanofibers -- 4 Fabrication of Electrospun Nanofibers -- 4.1 Solution Electrospinning -- 4.2 Melt Electrospinning -- 4.3 Emulsion Electrospinning -- 5 Application and Functional Research of Electrospinning Nanofibers -- 5.1 Application of Electrospun Fiber as Polymer Film -- 5.2 Application of Electrospinning Nanofibers in Intelligent and Flexible Electronics -- 5.3 Electrospinning Fibers for Biomedical Field -- 6 Conclusions and Future Prospects -- References -- Surface-Functionalized Electrospun Nanofibers for Tissue Engineering -- 1 Introduction -- 2 Electrospinning -- 3 Components of the Electrospinning Process -- 3.1 Apparatus -- 3.2 Parameters Affecting Fiber Quality -- 4 Importance of Surface Functionalization for Electrospun Nanofibers -- 5 Surface Functionalization/Modification Techniques for Nanofiber Scaffolds -- 5.1 Physical Approach -- 5.2 Chemical Approach -- 6 Characterization of Nanofibers -- 6.1 Physical Characterization of Nanofibers -- 6.2 Chemical Characterization of Nanofibers -- 6.3 Mechanical Characterization of Nanofibers -- 6.4 Structural and Thermal Evaluation of Nanofibers. , 7 Applications of Electrospun Nanofibers in Tissue Engineering Scaffolds -- 7.1 Bone Tissue Engineering -- 7.2 Neural Tissue Engineering -- 7.3 Cartilage Tissue Engineering -- 7.4 Skin Tissue Engineering -- 7.5 Clinical Perspective -- 7.6 Others -- 8 Challenges and Future Prospects -- 8.1 Challenges -- 8.2 Future Work -- 9 Conclusion -- References -- Functionalized Carbon Nanotubes-Based Electrospun Nano-Fiber Composite and Its Applications for Environmental Remediation -- 1 Introduction -- 2 Functionalization of Carbon Nanotubes (CNTs) -- 3 f-CNTs-Based Polymer Nano-Composites -- 4 Electrospun Nano-Fibers Composite of f-CNTs/Polymers -- 5 Application of CNTs-Based Electrospun Nano-Composite for Environmental Remediation -- 5.1 Removal of Toxic Metals from Water -- 5.2 Removal of Organic Pollutants from Water -- 5.3 Oil-Water Separation -- 5.4 Removal of Gaseous Pollutants -- 6 Chemo-Sensor for Detection of Toxicants -- 7 Conclusions -- 8 Future Prospect and Challenges -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Polymers-Electric properties. ; Polymers. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (618 pages)
    Edition: 1st ed.
    ISBN: 9780128236345
    Series Statement: Woodhead Publishing Series in Electronic and Optical Materials Series
    DDC: 620.19204297
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Conjugated polymers. ; Energy storage. ; Materials science. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (443 pages)
    Edition: 1st ed.
    ISBN: 9780128240953
    Series Statement: Woodhead Publishing Series in Electronic and Optical Materials Series
    DDC: 547.70457
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Metallic oxides-Properties. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (758 pages)
    Edition: 1st ed.
    ISBN: 9780323903592
    Series Statement: Metal Oxides Series
    DDC: 546/.3
    Language: English
    Note: Front Cover -- Metal Oxide Defects -- The Metal Oxides Book Series Edited by Ghenadii Korotcenkov -- Metal Oxide Defects: Fundamentals, Design, Development and Applications -- Copyright -- Contents -- List of contributors -- Series editor biography -- Preface to the series -- 1 - Transition metal ions in solid electrolytes. Ceramics and glasses -- 1. NASICON-type materials -- 1.1 NASICON-type structure -- 1.2 Doping to control their solid phase transitions -- 1.3 Applications -- 1.3.1 Pigments -- 1.3.2 Sensors -- 1.3.2.1 NO2 and NH3 sensor -- 1.3.2.2 SO2 sensor -- 1.3.3 Disposal of nuclear waste -- 1.3.4 Catalytic activity -- 1.3.5 Adsorption properties -- 1.4 Doped NASICON-type ceramics as solid electrolytes -- 2. Transition metal oxides in electrical conductor glasses -- 2.1 Skeleton: spatial arrangement and glassy matrix resulting properties -- 2.2 Tuning of properties versus selective cation replacement -- 2.3 Electrical properties tailoring -- Acknowledgments -- References -- 2 - The emergence of analytical techniques for defects in metal oxide -- 1. Introduction -- 2. Transmission electron microscopy (TEM) -- 2.1 Mass thickness contrast -- 2.2 Defects analysis in TEM -- 2.3 Limitations -- 3. X-ray diffraction (XRD) -- 3.1 Limitations -- 4. X-ray photoelectron spectroscopy (XPS) -- 4.1 Defect analysis by XPS -- 4.2 Limitations -- 5. X-ray absorption spectroscopy -- 5.1 XANES -- 5.2 EXAFS -- 5.3 Limitations -- 5.4 Positron annihilation spectroscopy (PAS) -- 6. Positron lifetime spectroscopy -- 6.1 Doppler broadening spectroscopy -- 6.2 Limitations -- 7. Electron paramagnetic resonance -- 8. Photoluminescence (PL) spectroscopy -- 9. UV-visible spectroscopy -- 9.1 Limitations -- 10. Scanning tunneling microscopy (STM) -- 11. Recent advancements for defect characterization -- 12. Conclusion -- References. , 3 - Vacancy and defect structures in metal oxides -- 1. Introduction -- 1.1 Experimental defect analysis techniques in metal oxides -- 2. Type of defects in metal oxides -- 2.1 Bulk structure and defects -- 2.2 Surface defects -- 2.2.1 Oxygen vacancies -- 2.2.2 Line defects -- 2.3 Interface defects -- 3. Effect of factors on defect chemistry -- 3.1 Doping effect -- 3.2 Temperature -- 3.3 Hydrogen treatment -- 3.4 Wet chemical reduction -- 3.5 Lithium-induced conversion -- 4. Defect engineering in metal oxides -- 4.1 Defect engineering of titanium dioxide -- 4.2 Defect engineering of zinc oxide -- 4.3 Defect engineering of cobalt oxide -- 4.4 Defect engineering of zirconia -- 4.5 Defect engineering of other metal oxides -- 5. Defects in metal oxides and their applications -- 5.1 Catalysis -- 5.2 Gas sensors -- 5.3 Photovoltaic cells -- 5.4 Photo-active devices -- 6. Conclusion -- Acknowledgments -- References -- 4 - Defects disorder of lanthanum cerium oxide -- 1. Introduction -- 2. Cerium oxide -- 2.1 Materials properties of CeO2 -- 2.2 Oxygen vacancy formation -- 2.3 Oxygen anion migration -- 2.4 Redox property of CeO2 and catalytic applications -- 2.4.1 Soot combustion -- 2.4.2 Solid oxide fuel cells -- 2.4.3 Sensor -- 2.5 Insulating property of CeO2 and MOS applications -- 2.6 Limitation of CeO2 -- 2.7 Lanthanum cerium oxide and its catalytic behavior -- 2.8 Lanthanum cerium oxide and its MOS characteristics -- 3. Conclusion -- 4. Recommendations for future research -- References -- Further reading -- 5 - Oxidation of metals and formation of defects by theoretical modeling -- 1. Introduction -- 2. Computational techniques for atomistic simulations -- 2.1 Computational materials science -- 2.2 Density functional theory -- 2.3 Molecular dynamics simulation -- 2.4 The reactive force field -- 3. Oxidation of bulk metals at the atomic scale. , 3.1 Modeling metal-oxygen interactions -- 3.2 Modeling the oxide film growth -- 4. Oxidation mechanisms of nanomaterials -- 4.1 Oxidation of metallic nanoparticles: formation of various nanostructures -- 4.2 Chain-like oxide growth on aluminum nanoparticles -- 5. Concluding remarks -- Acknowledgments -- References -- 6 - Role of defects in multiferroic nanoparticles -- 1. Introduction -- 1.1 Multiferroics -- 1.2 Multiferroic BiFeO3 -- 1.3 Nanophase multiferroics -- 1.4 Magnetoelectric couplings -- 1.5 Synthesis methods -- 1.5.1 Sol-gel -- 1.5.2 Hydrothermal synthesis -- 1.5.3 Combustion synthesis -- 1.5.4 Coprecipitation method -- 1.5.5 Solid-state reaction method -- 1.5.6 Thin film deposition method -- 1.6 Applications of multiferroics -- 1.6.1 Magnetic field sensors (AC and DC) -- 1.6.2 Multiferroic microwave resonator tuned electrically -- 1.6.3 Multiferroic magnetic recording heads -- 1.6.4 Multiferroic random access memories and multistate memories -- 1.6.5 Photovoltaic multiferroic solar cells -- 1.6.6 Multiferroic gyrators -- 1.6.7 Multiferroics for thermal energy harvesting -- 1.6.8 High voltage gain multiferroic amplifier -- 2. Role of defects in multiferroic nanoparticles -- 2.1 Strain -- 2.2 Bismuth vacancy -- 2.3 Oxygen vacancy -- 2.4 BiFeO3 multiferroic nanoparticles -- 2.5 Doped BiFeO3 multiferroic nanoparticles -- 2.6 Magnetoelectric couplings in BiFeO3 multiferroic nanoparticles -- 2.7 Summary -- References -- 7 - Oxygen defects, morphology, and surface chemistry of metal oxides: a deep insight through a joint experimental and theo ... -- 1. Introduction -- 2. Surfaces -- 2.1 Undercoordinated atoms -- 2.2 Defects: oxygen vacancies -- 2.3 Morphology and surface energy -- 3. Relationship between surfaces and catalytic, photocatalytic, luminescent, and antibacterial/antifungal properties -- 3.1 Catalytic/photocatalytic properties. , 3.2 Luminescent properties -- 3.3 Antibacterial/antifungal properties -- 4. Conclusion and future outlook -- References -- 8 - Point defects in stoichiometric and nonstoichiometric metal oxides for modern microelectronics -- 1. Introduction -- 2. Growth techniques, their advantages, and disadvantages for the growth of metal oxides -- 2.1 Physical vapor deposition -- 2.1.1 Sputtering -- 2.1.2 Thermal evaporation -- 2.1.3 Molecular beam epitaxy -- 2.2 Chemical vapor deposition -- 2.2.1 Plasma-enhanced CVD -- 2.2.2 Atomic layer deposition -- 3. Native defects in metal oxides: theory and experiment -- 3.1 Aluminum oxide -- 3.2 Tantalum pentoxide -- 3.3 Hafnium oxide -- 3.4 Zirconium oxide -- 4. Hydrogen-related defects in metal oxides -- 4.1 Aluminum oxide -- 4.2 Tantalum oxide -- 4.3 Hafnium oxide -- 4.4 Zirconium oxide -- 5. Conclusion remarks -- References -- 9 - Influence of defects upon mechanical properties of oxide materials -- 1. Introduction -- 2. Metal-oxide materials of different dimensionalities -- 2.1 The properties of oxide nanomaterials -- 2.2 Well-known oxide nanomaterials and their characteristics -- 2.2.1 Titanium oxide -- 2.2.2 Alkaline-earth oxides -- 2.2.3 Zirconium oxides -- 2.2.4 Other metal oxides -- 2.3 Diverse applications of oxide nanomaterials -- 3. Structural defects -- 3.1 A definition to structural defects and their different types -- 3.1.1 Point defects of oxide nanomaterials -- 3.1.2 Linear defects -- 3.1.3 Two-dimensional defects -- 3.2 Effect of defects on the properties of oxide materials -- 3.3 Mechanisms affecting the mechanical properties of defective oxide materials -- 4. A summary of previous works on oxide nanomaterials -- 4.1 Experimental works -- 4.2 Theoretical works -- 5. Concluding remarks and future perspective -- References -- 10 - Defect evolution in ZnO nanocrystal films at doping by group IIIA elements. , 1. Introduction -- 2. Samples preparation by USP and experimental setups -- 3. The film surface morphology and the impurity control -- 4. X-ray diffraction study -- 5. Transmittance, electrical resistivity, and bandgap energy control -- 6. Photoluminescence study and its temperature dependences -- 7. High resolution X-ray photoelectron spectra -- 8. The discussion of defect evolution versus donor doping levels -- 9. Conclusions -- Acknowledgments -- References -- 11 - The role of dopant on the defect chemistry of metal oxides -- 1. Introduction -- 2. Intrinsic defects -- 3. Extrinsic defects -- 4. Ionic conductivity -- 5. Electronic conductivity -- 6. Electromechanical properties -- 7. Summary -- Acknowledgments -- References -- 12 - Viable defect engineering with templates into metal oxides -- 1. Introduction -- 2. Different methods for creating defects -- 2.1 Chemical methods -- 2.2 Physical methods -- 3. Various defects in metal oxides -- 3.1 Oxygen vacancy -- 3.2 Cationic vacancy -- 3.3 Cationic doping -- 3.4 Anionic doping -- 4. Defect engineering and electrode materials -- 5. Defect engineering for rechargeable batteries -- 5.1 Metal-sulfur batteries -- 5.1.1 Heteroatom doping -- 5.1.2 Vacancy defects -- 5.2 Metal-air batteries -- 6. Conclusions -- References -- 13 - Role of defects on the transparent conducting properties of binary metal oxide thin film electrodes -- 1. Introduction to defects in transparent conducting oxides -- 2. Defects engineering in transparent conducting oxides -- 2.1 Defects by incorporation of dopants -- 2.2 Vacancy defects -- 3. Defects mechanism of transparent conducting oxides -- 4. Defect dimensions in transparent conducting oxide materials -- 5. Theoretical description of defects in transparent conducting oxides -- 5.1 Oxygen deficient transparent conducting oxide system. , 5.2 Excess metal ions in transparent conducting oxide system.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Nanochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (338 pages)
    Edition: 1st ed.
    ISBN: 9783319464589
    Series Statement: Springer Series on Polymer and Composite Materials Series
    DDC: 547.70457
    Language: English
    Note: Intro -- Contents -- 1 Conducting Polymer Nanocomposites: Recent Developments and Future Prospects -- Abstract -- 1 Introduction -- 2 Background -- 2.1 Percolation Theory -- 2.2 Conduction Mechanism -- 2.3 Characterization of Conductive Network in CPCs -- 3 The Design for High-Performance CPCs -- 3.1 Conductive Fillers -- 3.2 Polymer Matrix -- 3.3 The Choice of Fabrication Methods -- 3.3.1 Melting Blending -- 3.3.2 Solution Mixing -- 3.3.3 In Situ Polymerization -- 4 The Strategy for Controlling the Morphology of Conductive Filler Network in CPCs -- 4.1 Morphology Control by Polymer Blends -- 4.2 Morphology Control by Thermal Annealing -- 4.3 Morphology Control by Shear Force -- 4.4 Morphology Control by Latex Technology -- 4.5 Morphology Control by Mixing Different Nanofillers -- 4.6 Morphology Control Through Other Methods -- 5 Applications of CPCs -- 5.1 Sensors -- 5.1.1 Temperature Sensors -- 5.1.2 Strain Sensor -- 5.1.3 Chemical Sensor -- 5.1.4 Stretchable Conductor -- 5.1.5 Thermoelectric Material -- 5.1.6 Electrodes for Energy Storage -- 5.1.7 Biomedical Application -- 6 Conclusion and Outlook -- Acknowledgments -- References -- 2 Magnetic Nanoparticles-Based Conducting Polymer Nanocomposites -- Abstract -- 1 Introduction -- 2 Synthetic Strategies -- 2.1 Mixing or Blending Pre-synthesized Conducting Polymers and Magnetic NPs -- 2.2 In Situ Synthesis of Magnetic Nanoparticles into Conducting Polymers -- 2.3 In Situ Polymerization in the Presence of Magnetic Nanoparticles -- 2.4 Simultaneous Polymerization and Synthesis of Magnetic Nanoparticles -- 3 Magneto-Electrical Properties -- 3.1 Magnetic Nanoparticles -- 3.2 Conducting Polymers -- 3.2.1 Characteristics of the Most Common Conducting Polymers -- Polyaniline -- Polythiophene -- Polypyrrole -- 3.3 Magneto-Electrical Properties of the Composites -- 4 Applications. , 4.1 Electromagnetic Shielding and Microwave Absorbing Materials -- 4.2 Polymer Solar Cells -- 4.3 Sensors -- 5 Concluding Remarks and Future Perspectives -- Acknowledgments -- References -- 3 Polypyrrole Nanotubes-Silver Nanoparticles Hybrid Nanocomposites: Dielectric, Optical, Antimicrobial and Haemolysis Activity Study -- Abstract -- 1 Introduction -- 2 Present Status and Future Prospects of Conducting Polymer-based Hybrid Nanocomposites -- 3 Conducting Polymer-Based Hybrid Nanocomposites -- 3.1 Nanocomposites with Metal Nanoparticles -- 3.2 Nanocomposites with Metal-Oxide Nanoparticles -- 3.3 Nanocomposites with Carbon Materials -- 3.4 Conducting Polymer Based Ternary Nanocomposites -- 4 Properties and Applications of Conducting Polymer Based Hybrids -- 4.1 Nanoelectronics -- 4.2 Energy Storage Devices -- 4.3 Sensors -- 4.4 Microwave Absorption and EMI Shielding -- 4.5 Biomedical Applications -- 5 Surface-Enhanced Raman Spectroscopy Studies of Metal-Polypyrrole Nanocomposites -- 6 Polypyrrole Nanotubes-Silver Nanoparticles Hybrid Nanocomposites -- 6.1 Synthesis -- 6.1.1 Synthesis of Polypyrrole Nanotubes -- 6.1.2 Preparation of Polypyrrole Nanotubes-Silver Nanoparticles Nanocomposites -- 6.2 Morphological Analysis -- 6.3 X-Ray Diffraction Study -- 6.4 UV-Vis Spectroscopy Study -- 6.5 Dielectric Spectroscopy -- 6.5.1 Permittivity Formalism -- 6.5.2 Modulus Formalism -- 6.6 Ac Conductivity Study -- 6.7 Antimicrobial Activity of the Nanocomposites -- 6.8 Haemolysis Activity Study -- 7 Conclusions -- References -- 4 Conductive Polymer Composites Based on Carbon Nanomaterials -- Abstract -- 1 Introduction -- 2 Brief History of Conductive Polymer and Their Composites -- 3 Some Important Terms Related to Conductive Polymers and Their Definitions -- 3.1 Some Most Studied Conductive Polymers -- 3.2 Composites. , 3.3 Nanomaterials and Conducting Polymer Composites -- 4 Carbon Nanotube (CNT)-Based Conductive Polymer Composites -- 4.1 Methods of Synthesis for CNTs-Based Conducting Polymers -- 4.2 Characterization Techniques -- 4.3 Application of CNT-Based Conducting Polymer Nanocomposites -- 4.3.1 Supercapacitors -- 4.3.2 Fuel Cell Electrode -- 4.3.3 Electrochemical Actuators -- 4.3.4 Memory Devices -- 4.3.5 Field Emission Devices -- 4.3.6 Lithium Batteries -- 5 Graphene-Based Conductive Polymer Composites -- 5.1 Graphene -- 5.2 Graphene and Derivatives-Based Conducting Polymers -- 5.3 Various Approaches for the Synthesis of Graphene-Based Conducting Polymer -- 5.3.1 Solution and Melt Mixing Without Covalent Bonding -- 5.3.2 In Situ Polymerization Without Covalent Bonding -- 5.3.3 Characterization Techniques -- 5.3.4 Application of Graphene-Based Conducting Polymers -- 6 Conclusion and Future Prospects -- References -- 5 Clay-Based Conducting Polymer Nanocomposites -- Abstract -- 1 Introduction -- 2 Nanocomposites -- 2.1 Clays -- 2.2 Polymeric Nanocomposites -- 2.2.1 Preparation of Nanocomposites -- 2.3 Conducting Polymer Nanocomposites -- 2.3.1 Conducting Polymer -- Polyaniline -- 3 Applied Study: PAni and MMT -- 4 Conclusions -- References -- 6 A Review of Supercapacitor Energy Storage Using Nanohybrid Conducting Polymers and Carbon Electrode Materials -- Abstract -- 1 Introduction -- 2 Supercapacitor Energy Storage Mechanisms -- 3 CPs and Carbon Materials in Energy Storage -- 4 CP/Carbon Hybrids as Electrodes for Supercapacitor -- 4.1 CP/Activated Carbon Hybrids -- 4.2 CP/Carbon Nanotube Hybrids -- 4.3 CP/Graphene Hybrids -- 4.4 CP Hybrids for Flexible Semisolid/Solid-State Supercapacitors -- 4.5 Equivalent Circuit Models -- 5 Conclusion -- Acknowledgments -- References -- 7 Conducting Polymer Hydrogels and Their Applications -- Abstract -- 1 Introduction. , 1.1 Hydrogels -- 1.2 Classifications of Hydrogels -- 1.2.1 Classification Based on Source -- 1.2.2 Classification According to Polymeric Composition -- 1.2.3 Classification Based on Structural Feature -- 1.2.4 Classification Based on Physical Appearance -- 1.2.5 Classification Based on Ionic Charges -- 1.2.6 Classification Based on Type of Cross-Linking -- 1.3 Synthesis of Graft Copolymers -- 1.4 Characteristics of Hydrogels -- 2 Conducting Polymers -- 3 Conducting Hydrogels -- 3.1 Conducting Hydrogel Based upon Conducting Polymer -- 3.2 Conducting Hydrogel Based upon Metal/Nanoparticles -- 3.3 Method of Synthesis of Conducting Hydrogels -- 3.3.1 Chemically Cross-Linked Conductive Hydrogels -- 3.3.2 Radiation Cross-Linked Conductive Hydrogels -- 4 Characterization -- 5 Applications of Conducting Hydrogels -- 5.1 Drug Delivery Devices -- 5.2 Biomedical Applications -- 5.3 Agricultural and Horticultural -- 5.4 Wastewater Treatment -- 5.5 Bioelectrodes -- 6 Conclusion and Future Perspective -- References -- 8 Conducting Polymer Nanocomposites for Sensor Applications -- Abstract -- 1 Introduction to Sensors/Biosensors -- 2 Conducting Polymers -- 3 Nanostructure Conducting Polymers -- 3.1 Hard Template Synthesis -- 3.2 Soft Template Synthesis -- 3.3 Electrospinning Method -- 4 Conducting Polymer Nanocomposites -- 4.1 Synthesis of Conducting Polymer Nanocomposites -- 4.2 Particulate (0D)-Reinforced Nanocomposites -- 4.3 Fiber (1D)-Reinforced Nanocomposites -- 4.4 Flake (2D)-Reinforced Nanocomposites -- 4.5 Multicomponents-Reinforced Nanocomposites -- 5 Conducting Polymer Nanocomposites for Sensors/Biosensors -- 5.1 Gas Sensing Application -- 5.2 Biosensing Application -- 6 Conclusion -- References -- 9 Conducting Polymer Nanocomposite-Based Supercapacitors -- Abstract -- 1 Introduction -- 2 Energy and Power Characteristics of Supercapacitors. , 2.1 Capacitance of an Electrode -- 2.2 Electrical Power and Energy of a Supercapacitor -- 2.3 Materials for Construction of Supercapacitors -- 2.4 Charge Storage Mechanisms -- 2.5 Electronically Conducting Polymer -- 2.6 Polypyrrole (PPy) -- 2.7 Polyaniline (PAn) -- 2.8 Poly(3,4-Ethylenedioxythiophene) (PEDOT) -- 2.9 The Necessity for ECP Nanocomposites -- 2.10 The Formation of ECP Nanocomposites -- 2.11 ECP-CNT Nanocomposites -- 2.12 ECP-Graphene Nanocomposite -- 2.13 ECP-Cellulose Nanocomposites -- 2.14 Prototypes and Devices -- 3 Comments -- 4 Conclusions -- References -- 10 Composites Based on Conducting Polymers and Carbon Nanotubes for Supercapacitors -- Abstract -- 1 Introduction -- 2 CNT Modifications with Polymers -- 3 Composites Based on CNTs and CPs for Supercapacitors -- 3.1 PPy-CNT Composites -- 3.2 PANi-CNT Composites -- 4 Summary, Conclusive Remarks and Future Perspectives -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Singapore : Springer
    Keywords: Medicine ; Biomedicine ; Laboratory medicine ; Biomedical engineering ; Biotechnology ; Medical biochemistry ; Biochemistry ; Biochemistry ; Biochemical Phenomena ; Guideline
    Description / Table of Contents: This book is a practical guidebook in biochemistry, for medical as well as life sciences' students. The book covers reference values, sample collection procedure and detailed protocol to perform experiments. Each experiment starts with a brief introduction of the protocol, followed by specimen requirements and procedure. The procedures are presented in a very lucid manner and discuss details of calculations and clinical interpretations,The book is divided into 29 chapters, It offers references, general guidelines and abbreviations and provides principles and procedures of clinical biochemistry tests, along with their diagnostic importance
    Type of Medium: Online Resource
    Pages: Online-Ressource (XXII, 175 p. 30 illus., 18 illus. in color, online resource)
    ISBN: 9789811081866
    Series Statement: SpringerLink
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...