GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Bioelectrochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (559 pages)
    Edition: 1st ed.
    ISBN: 9781119538561
    DDC: 572.437
    Language: English
    Note: Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Electrochemical Performance Analyses of Biofilms -- 1.1 Introduction -- 1.2 Electrochemical Principles -- 1.2.1 Electrochemical Cells -- 1.2.2 Nernst Equation and Equilibrium Constant -- 1.2.3 For an Electrochemical Cell -- 1.2.4 Faradic and Nonfaradic Currents -- 1.2.4.1 Faradic Current -- 1.2.4.2 Nonfaradaic Current -- 1.3 Cyclic Voltammetry -- 1.3.1 Working Principle and Instrumentation -- 1.3.2 Cyclic Voltammetry and Data Interpretation -- 1.3.2.1 R eversible Process -- 1.3.2.2 Irreversible Process -- 1.3.2.3 Quasi-Reversible Electron Transfer Process -- 1.3.2.4 Special Case -- 1.3.3 Applications of CV -- 1.3.3.1 Case Study 1 -- 1.3.3.2 Case Study 2 -- 1.3.3.3 Case Study 3 -- 1.3.4 Related Methods -- 1.3.4.1 Amperometry -- 1.3.4.2 Differential Pulse Voltammetry -- 1.4 Electrochemical Impedance Spectroscopy -- 1.4.1 Introduction and Basic Concepts -- 1.4.1.1 Direct Current and Alternating Current -- 1.4.1.2 Resistance and Impedance -- 1.4.1.3 AC Impedance Theory -- 1.4.1.4 Electrical Circuit Elements -- 1.4.1.5 Graphical Representation of AC Impedance Spectroscopy Data -- 1.4.2 Equivalent Circuit Elements and Electrochemistry -- 1.4.2.1 Electrolyte Resistance -- 1.4.2.2 Double-layer Capacitance and Pseudocapacitance -- 1.4.2.3 Charge Transfer Resistance -- 1.4.2.4 Diffusion -- 1.4.2.5 Constant Phase Element (CPE) -- 1.4.3 Equivalent Electrical Circuits Commonly Used for Biological Systems -- 1.4.3.1 Equivalent Circuit Model 1 -- 1.4.3.2 Equivalent Circuit Model 2 -- 1.4.3.3 Equivalent Circuit Model 3 -- 1.4.3.4 Equivalent Circuit Model 4 -- 1.4.3.5 Equivalent Circuit Model 5 -- 1.4.3.6 Equivalent Circuit Model 6 -- 1.4.3.7 Equivalent Circuit Model 7 -- 1.5 Electrochemical Noise (ECN) Technique -- 1.5.1 Introduction -- 1.5.2 Mathematical Background. , 1.5.2.1 Shot Noise Parameters -- 1.5.3 Application of ECN to Detect Microbial Corrosion -- 1.5.3.1 Case Study -- 1.6 Conclusion -- Acknowledgments -- References -- Take-home Message -- Test Yourself -- Chapter 2 Direct Electron Transfer in Redox Enzymes and Microorganisms -- 2.1 Introduction -- 2.2 Wiring Enzymes to the Electrode Surface -- 2.2.1 Glucose Oxidase -- 2.2.2 Multicopper Oxidases -- 2.2.3 Iron-containing Enzymes -- 2.2.4 Cytochrome P450 in Human Liver Microsomes -- 2.2.5 Iron/Copper-containing Enzymes -- 2.2.6 Cellobiose Dehydrogenase -- 2.2.7 Molybdenum Enzymes -- 2.2.8 Xanthine Dehydrogenase -- 2.2.9 Dimethylsulfoxide Reductase -- 2.2.10 Mo-Fe Protein -- 2.2.11 Fructose Dehydrogenase (FDH) -- 2.2.12 Tungsten-containing Formate Dehydrogenase -- 2.3 Wiring Microorganisms to the Electrode Surface -- 2.3.1 Electroactive Bacterium and Electrodes -- 2.3.2 Electricity-producing Bacteria -- 2.3.3 Electron Transfer in Microbial Fuel Cells -- 2.3.4 Mediated Electron Transfer -- 2.3.5 Direct Electron Transfer -- References -- Take-home Message -- Test Yourself -- Chapter 3 Electrochemical Techniques and Applications to Characterize Single- and Multicellular Electric Microbial Functions -- 3.1 Introduction to Microbial Electrochemical Functions and Processes -- 3.1.1 Microbes Capable of Exchanging Electrons with Extracellular Solid Surfaces -- 3.1.2 Targets for Whole‐cell Techniques -- 3.2 Electrochemical Techniques Related to Single‐cell Processes -- 3.2.1 Interfacial and Metabolic Current (Amperometry and Voltammetry Techniques) -- 3.2.1.1 Single-potential Amperometry -- 3.2.1.2 Cyclic Voltammetry -- 3.2.1.3 Differential Pulse Voltammetry -- 3.2.1.4 Linear Sweep Voltammetry -- 3.2.2 Microscopy-combined Electrochemical Techniques -- 3.2.2.1 Electron Transport Processes -- 3.2.2.2 Metabolic Processes -- 3.2.3 Spectroelectrochemistry. , 3.3 Electrochemical Techniques Related to Biofilm Processes -- 3.3.1 Use of IDA in a Bipotentiostat System -- 3.3.2 Electron-hopping Mechanism Across the Electroactive Sites -- 3.3.3 Metallic-like Conductivity Mechanism -- 3.4 Techniques to Analyze Nanowires -- 3.4.1 Atomic Force Microscope (AFM) -- 3.4.1.1 Working Principal of AFM -- 3.4.1.2 AFM Studies for Nanowires -- 3.4.2 Scanning Tunneling Microscopy (STM) -- 3.4.2.1 Working Principle of STM -- 3.4.2.2 STM for the Nanowire -- References -- Take-home Message -- Test Yourself -- Chapter 4 Electrochemical Analysis of Single Cells -- 4.1 Introduction -- 4.2 Single-cell Analysis Applications and Current Technologies -- 4.2.1 Genomics -- 4.2.1.1 Techniques -- 4.2.1.2 Applications -- 4.2.2 Transcriptomics -- 4.2.2.1 Techniques -- 4.2.2.2 Applications -- 4.2.3 Proteomics -- 4.2.3.1 Techniques -- 4.2.3.2 Applications -- 4.2.4 Metabolomics -- 4.2.4.1 Techniques -- 4.2.4.2 Applications -- 4.3 Electrochemical Methods for Single‐cell Analysis -- 4.3.1 Micro and Nanofabrication for Intracellular Analysis Within Biological Systems -- 4.3.1.1 Strategies for Fabricating Nanoelectrodes -- 4.3.1.2 Adapting Nanoelectrodes -- 4.3.1.3 Microfluidics -- 4.3.2 Electrochemical Microscopy with Advanced Resolution Imaging -- 4.3.2.1 Scanning Electrochemical Microscopy (SECM) -- 4.3.2.2 Scanning Ion Conductive Microscopy (SICM) -- 4.3.2.3 Nanopipettes in SECM and SICM -- 4.3.2.4 Electrochemical Measurement of Intracellular Components Within -- 4.4 Microelectrodes for Single‐cell Analysis -- 4.4.1 Fabrication Methods for 2D and 3D Microelectrodes -- 4.4.2 Cellular Applications -- 4.4.2.1 Neuron Transmitters and Signaling -- 4.4.2.2 Cell Expression Monitoring -- 4.4.2.3 Patch Clamps -- 4.4.2.4 Possible Issues for Capturing Single Cells on Electrode Surfaces -- 4.4.2.5 Measurement Variability. , 4.5 Electroluminescence-based Single-cell Measurements -- 4.6 Lab-on-chip-based Single-cell Analysis -- 4.6.1 Surface Plasmon Resonance (SPR) -- 4.7 Conclusion -- References -- Take-home Message -- Test Yourself -- Chapter 5 Biocorrosion -- 5.1 Introduction -- 5.1.1 Uniform Corrosion -- 5.1.2 Galvanic Corrosion -- 5.1.3 Crevice Corrosion -- 5.1.4 Pitting Corrosion -- 5.1.5 Intergranular Corrosion -- 5.1.6 Erosion Corrosion -- 5.1.7 Stress Corrosion Cracking -- 5.1.8 Biocorrosion -- 5.2 Microorganisms Involved in Corrosion -- 5.2.1 Sulfate-reducing Bacteria (SRB) -- 5.2.2 Sulfate-oxidizing Bacteria (SOB) -- 5.2.3 Iron-oxidizing Bacteria (IOB) -- 5.2.4 Acid-producing Bacteria (APB) -- 5.2.5 Slime-forming Bacteria -- 5.3 Mechanisms -- 5.3.1 Differential Concentration Cells -- 5.3.2 Cathodic Depolarization -- 5.3.3 Galvanic Cells -- 5.3.4 Corrosive Metabolic Products -- 5.3.5 Extracellular Electron Transfer -- 5.4 Biocorrosion Control Strategies -- 5.4.1 Pigging -- 5.4.2 Biocides -- 5.4.2.1 Oxidizing Biocides -- 5.4.2.2 Non-oxidizing Biocides -- 5.5 Materials Vulnerable to Biocorrosion -- 5.6 Biocorrosion of Biomedical Implants -- 5.7 Biocorrosion Detection Techniques -- 5.7.1 Weight Loss Method -- 5.7.2 Potentiodynamic Polarization -- 5.7.3 Electrochemical Impedance Spectroscopy (EIS) -- 5.8 Conclusion -- Acknowledgments -- References -- Further Reading -- Take-home Message -- Test Yourself -- Chapter 6 Microbial Fuel Cells : A Sustainable Technology for Pollutant Removal and Power Generation -- 6.1 Introduction -- 6.2 Microbial Fuel Cells -- 6.2.1 A Brief History -- 6.2.2 Operating Principles -- 6.2.3 Electrogens in MFCs -- 6.2.3.1 Direct Electron Transfer -- 6.2.3.2 Mediated Electron Transfer -- 6.2.4 Applications -- 6.3 Measuring Performance -- 6.3.1 Voltage Generation -- 6.3.2 Pollutant Treatment -- 6.3.3 Internal Resistance -- 6.3.3.1 Polarization. , 6.3.3.2 Current Interrupt Technique -- 6.3.3.3 E lectrochemical Methods -- 6.3.4 Electrochemical Analysis -- 6.4 MFC Configuration -- 6.5 Materials -- 6.5.1 Anode -- 6.5.2 Cathode -- 6.5.3 Catholyte -- 6.5.4 Separator -- 6.5.5 Current Collectors -- 6.5.6 Load -- 6.6 Limitations in MFCs -- 6.6.1 Limited Power Generation -- 6.6.2 Methanogenesis -- 6.6.3 Substrate and Oxygen Diffusion -- 6.6.4 Sedimentation of Microorganisms -- 6.7 Other MFC-based Technologies -- 6.7.1 Sediment MFCs -- 6.7.2 Body Fluid Batteries -- 6.7.3 Toxicity Sensors -- 6.7.4 Identification and Quantification of Microorganisms -- 6.7.5 Analyte Sensors -- 6.7.6 MFC as a BOD Sensor -- 6.8 Pilot-scale MFCs -- References -- Take-home Message -- Test Yourself -- Chapter 7 Biophotovoltaics: Molecular Mechanisms and Applications -- 7.1 Introduction -- 7.2 Photocurrent Generation with Biological Catalysts -- 7.3 Photosynthetic Microbes as Photobioelectrocatalysts in BESs -- 7.4 Biocatalysts of Photosynthetic Organisms -- 7.4.1 Photosynthetic Reaction Centers (PRCs) -- 7.4.2 Photosystem II -- 7.4.3 Photosystem I -- 7.5 Electron Transfer in Microalgae During Photosynthesis (Light Reaction) -- 7.5.1 Light Reaction and Photophosphorylation in Microalgae -- 7.5.2 Components of Light Reaction -- 7.5.3 Photon-Electron Conversion in Microalgae -- 7.5.4 The Dark Reaction in Microalgae -- 7.5.4.1 Carbon Assimilation -- 7.5.4.2 Photorespiration -- 7.5.4.3 Reactions of the Calvin-Benson Cycle -- 7.6 Electron Transfer Mechanisms in Purple Photosynthetic Bacteria -- 7.6.1 Electron Transport Mechanisms along e‐Pili -- 7.6.2 e-Pili as Maintainable Electronic Materials -- 7.7 Electron Transfer Mechanisms of Cyanobacteria -- 7.8 Models of Solar Energy Conversion Devices -- 7.8.1 Microbial Solar Cells (MSCs) -- 7.8.2 Photosynthetic Bacteria in Solar Cells -- 7.8.3 Fuel Cell-Solar Cell Hybrids. , 7.9 Applications and Future Perspectives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Biomembranes 731 (1983), S. 229-238 
    ISSN: 0005-2736
    Keywords: (Ca^2^+ + Mg^2^+)-ATPase kinetics ; (Rat ascites hepatoma) ; Nucleoside specificity
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical and Biophysical Research Communications 105 (1982), S. 1453-1460 
    ISSN: 0006-291X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular 956 (1988), S. 232-242 
    ISSN: 0167-4838
    Keywords: Amino acid sequence ; Chemical modification ; Ligand binding site ; Phosphofructo-1-kinase ; isozyme
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/General Subjects 678 (1981), S. 213-220 
    ISSN: 0304-4165
    Keywords: (Murine thymocyte) ; Ganglioside ; Glycolipids ; Leukemia ; Sialyltransferase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical Education 7 (1979), S. 11-12 
    ISSN: 0307-4412
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochemical Education 5 (1977), S. 76 
    ISSN: 0307-4412
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 50 (1992), S. 386-391 
    ISSN: 0730-2312
    Keywords: natural killer cells ; human aging ; senescence ; mature phenotype ; cytotoxic activity ; MHC-unrestricted ; cell mediated immunity ; CD16 (Leu-11) ; CD57 (Leu-7) ; CD56 (Leu-19) ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The major histocompatibility complex-unrestricted, cell-mediated, constitutive anti-tumor cytotoxic function of natural killer cells is highly preserved in healthy elderly. A study of the dynamics of expression of natural killer cell-associated phenotypes during immunosenescence shows that selective, bidirectional, and disproportionate changes in certain natural killer cell subset number and ratio take place during aging. The mean natural killer cell subset ratio (%CD16+CD57+ over%CD56+CD57-)gradually increases from a young adult level of 0.7 to 4.6 with advancing age predominantly due to a tripling of %CD16+57+ cells as opposed to a moderate decrease (-54%)in %CD56+57- phenotype. The parallel increase in natural killer phenotype ratio and cytotoxic activity might represent a shift in the maturity status of these cells. Based on these findings, a model of natural killer cell immunosenescence is proposed. It is concluded that not all immunosenescent changes need be detrimental; some may even improve the potential for survival and represent an adaptational immunosenescent change. © 1992 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...