GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The present study investigates the modulation of the ventral tegmental area (VTA)-ventral pallidum (VP) dopaminergic system by glutamate agonists in rats. The glutamate receptor agonists N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) were infused via reversed microdialysis into the VTA, and dopamine (DA), glutamate, and aspartate levels in the VTA and ipsilateral VP were monitored together with motor behavior screened in an open field. NMDA (750 μM) infusion, as well as AMPA (50 μM) infusion, induced an increase of DA and glutamate levels in the VTA, followed by an increase of DA levels in the ipsilateral VP and by enhanced locomotor activity. The increase of DA in the VP was similar after administration of these two glutamate agonists, although motor activity was more pronounced and showed an earlier onset after NMDA infusion. Glutamate levels in the VP were not increased by the stimulation of DA release. It is concluded that DA is released from mesencephalic DA neurons projecting to the VP and that these neurons are controlled by glutamatergic systems, via NMDA and AMPA receptors. Thus, DA in the VP has to be considered as a substantial modulator. Dysregulation of the mesopallidal DA neurons, as well as their glutamatergic control, may play an additional or distinct role in disorders like schizophrenia and drug addiction.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 73 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : Glutamate has been shown to modulate motor behavior, probably via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that are involved in the control of the mesolimbic dopamine (DA) system, that is, the ventral tegmental area (VTA)-nucleus accumbens (NAC). In the present study, we investigated the effects of uncompetitive (MK-801) and competitive [dl-2-amino-5-phosphonopentanoic acid (AP-5), CGP 40116] NMDA receptor antagonists and NMDA and AMPA on DA release in the mesolimbic system and on motor behavior. Systemic injection and intrategmental infusion of MK-801 increased DA levels in the VTA, but the systemic administration enhanced DA exclusively in the NAC and increased motor behavior. In contrast, intrategmental infusion of AP-5, but not the systemic administration of its lipophilic analogue CGP 40116, decreased the DA release in the two regions without affecting motor behavior. NMDA and AMPA infusion into the VTA increased DA levels in both areas. This increase was accompanied by a strong motor behavioral stimulation after NMDA but only a moderate increase after AMPA infusion. The present results indicate that mesolimbic DA neurons are controlled by the glutamatergic system and that the effects of uncompetitive and competitive NMDA receptor antagonists on DA release are mediated by an interaction with different brain areas. These findings may account for the different effects of NMDA receptor ligands on motor behavior.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The nucleus accumbens, as the main input structure of the ventral basal ganglia loop, is described as a limbic–motor interface. Dopamine input to nucleus accumbens modulates processing of concurrent glutamate input from limbic structures carrying motor and motivational information. There is evidence that these dopamine/glutamate interactions are fundamentally involved in response selection processes. However, the pedunculopontine tegmental nucleus (PPTg) in the brainstem is connected with limbic structures as well as dopaminergic midbrain areas, which also project to the nucleus accumbens. Furthermore, behavioral studies implicate the PPTg in complex, motivated behavior. Thus, the PPTg might be involved in motivated behavior by influencing response selection processes in the nucleus accumbens. In this study we used in vivo microdialysis in freely moving rats in order to inhibit (100, 200, 300 and 400 µm baclofen) or stimulate [5, 12.5, 25 or 50 µmα-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)] the PPTg in animals that are performing an operant discrimination task for food reward. The behavioral consequences were correlated with dopamine and glutamate levels in nucleus accumbens and PPTg, respectively. PPTg inhibition by local GABAB receptors impaired the response rate and accuracy of performance in the operant discrimination task. PPTg stimulation by local AMPA receptors exclusively impaired the response rate. Both treatments blocked the performance-driven dopamine signal in nucleus accumbens, whereas glutamate in PPTg was enhanced after AMPA administration only. The data indicate that the PPTg functionally participates in a network of subcortical and cortical structures, which is responsible for the execution of motivated behavior and response selection processes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: NMDA receptor antagonists have been shown to block several forms of neural and behavioural plasticity. The prototypical and most widely-used noncompetitive NMDA receptor antagonist is dizocilpine (MK-801). Here we have examined the effect of MK-801 on the context-dependent augmentation (‘sensitization’) of catalepsy in rats which develops with repeated administration of haloperidol. It was found that over a 7-day treatment period animals receiving haloperidol (0.25 or 0.5 mg/kg) plus MK-801 (0.16 mg/kg) showed a context-dependent day-to-day increase in catalepsy similar to animals that received haloperidol alone. However, when all animals were treated with haloperidol alone on day 8 of the experiment, animals that had received haloperidol plus MK-801 before displayed a much smaller cataleptic response, similar to that observed in the haloperidol group on the first treatment day, i.e. the previously-established enhancement of catalepsy was no longer expressed. These results may be explained in terms of state-dependency effects induced by MK-801. Implications of these findings for the clinical use of NMDA receptor antagonists in the treatment of Parkinson's disease are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...