GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 6174-6185 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: An ab initio configuration interaction (CI) study including spin-orbit coupling is carried out for the ground and low-lying excited states of the HI molecule by employing a relativistic effective core potential for the iodine atom. The computed spectroscopic constants for the X 1Σ+ ground and b 3ΠΩ Rydberg states are in good agreement with available experimental data, as are the vertical excitation energies for the repulsive a 3Π1, a 3Π0+, and A 1Π1 states of the A band. The a 3Π0+ state is found to possess a shallow minimum of 600 cm−1 depth outside the Franck–Condon region, at (approximate)5.1 a0. The electric-dipole moments have also been calculated for transitions from the ground to the A band states. Contrary to what is usually assumed, the a 3Π1, A 1Π1←X0+ transition moments are found to depend strongly on internuclear distance. Employing the computed potential energy and transition moment data, partial and total absorption spectra for the A band are calculated and the I* quantum yields, ΦI*(ν), are determined as a function of excitation energy. The maximal ΦI*(ν) values are calculated to be 0.55–0.59 and lie at 39 000–40 000 cm−1, which agrees well with experimental results. The influence of the t 3Σ1+ state and of the nonadiabatic effects on the ΦI*(ν) values is found to be negligible in the essential part of the A band. Finally, it is shown that significantly higher I* quantum yield values (up to 0.8–0.9) may be achieved when vibrationally hot HI molecules are excited in the appropriate spectral range. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 3003-3009 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Nonadiabatic calculations of vibrational energies and wave functions are carried out for the E(0+, 3P2) and f(0+, 3P0) ion-pair states of the ClF molecule. It is shown that strong radial coupling between these 0+ states is caused by a significant variation of their 3Σ− and 3Π Λ-S contributions with internuclear distance and results in vibrational energy shifts as well as changes in the corresponding adiabatic vibrational wave functions. Both resonance and nonresonance interactions between vibronic levels of these two adiabatic states are found to be important, but significant mixing of the adiabatic wave functions can occur only for the nearly resonant levels located around f,v=3; E,v=7 and f,v=8; E,v=13. Nonadiabatic interactions are found to be responsible for the appearance of long-wavelength maxima in the f,v=3,4 emission spectra that was the subject of the discrepancy between theoretical and experimental data discussed in the previous paper [A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, and D. B. Kokh, J. Chem. Phys. 112, 2274 (2000)]. Inclusion of nonadiabatic effects leads to notably better agreement between the calculated and measured bound-free emission spectra. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...