GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Klus, Andrea; Prange, Matthias; Varma, Vidya; Tremblay, L Bruno; Schulz, Michael (2018): Abrupt cold events in the North Atlantic Ocean in a transient Holocene simulation. Climate of the Past, 14(8), 1165-1178, https://doi.org/10.5194/cp-14-1165-2018
    Publication Date: 2023-03-03
    Description: Abrupt cold events have been detected in numerous North Atlantic climate records from the Holocene. Several mechanisms have been discussed as possible triggers for these climate shifts persisting decades to centuries. Here, we describe two abrupt cold events that occurred during an orbitally forced transient Holocene simulation using the Community Climate System Model version 3. Both events occurred during the late Holocene (4305-4267 BP and 3046-3018 BP, respectively). They were characterized by substantial surface cooling (-2.3 and -1.8 °C, respectively) and freshening (-0.6 and -0.5 PSU, respectively) as well as severe sea ice advance east of Newfoundland and south of Greenland, reaching as far as the Iceland Basin in the northeastern Atlantic at the climaxes of the cold events. Convection and deep-water formation in the northwestern Atlantic collapsed during the events, while the Atlantic Meridional Overturning Circulation was not substantially affected (weakening by only about 10% and 5%, respectively). The events were triggered by prolonged phases of a positive North Atlantic Oscillation caused substantial changes in the sub-polar ocean circulation and associated freshwater transports, resulting in a weakening of the sub-polar gyre. Our results suggest a possible mechanism by which abrupt cold events in the North Atlantic region may be triggered by internal climate variability without the need of an external (e.g. solar or volcanic) forcing.
    Keywords: Center for Marine Environmental Sciences; File format; File name; File size; MARUM; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 28 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: The climate system can potentially switch from one stable state to another. The closer a system is to a bifurcation point (i.e., ‘tipping point’), the more likely it is that even small perturbations can force the system to experience a state shift, e.g., a collapsing Atlantic meridional overturning circulation (AMOC) and associated cooling in parts of the North Atlantic. Here, we present an abrupt state transition from a warm to a cold North Atlantic climate state with expanded sea ice during an orbitally forced transient Holocene simulation performed with the Community Climate System Model version 3. The state transition is associated with a weakening of the AMOC by about 33% in this simulation. The changing background climate induced by slow external orbital forcing plays an important role for the abrupt climate shift. The model allows the identification of regions and variables that play a key role for a potential climate transition and show early-warning signals. Increase in autocorrelation and standard deviation as well as trends in skewness especially for sea-surface salinity in the northern North Atlantic are identified as robust early-warning signals, whereas no early-warning signals are found in the time series of the AMOC stream function.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 14 (8). pp. 1165-1178.
    Publication Date: 2021-02-08
    Description: Abrupt cold events have been detected in numerous North Atlantic climate records from the Holocene. Several mechanisms have been discussed as possible triggers for these climate shifts persisting decades to centuries. Here, we describe two abrupt cold events that occurred during an orbitally forced transient Holocene simulation using the Community Climate System Model version 3. Both events occurred during the late Holocene (4305–4267 BP and 3046–3018 BP for event 1 and event 2, respectively). They were characterized by substantial surface cooling (−2.3 and −1.8 ∘C, respectively) and freshening (−0.6 and −0.5 PSU, respectively) as well as severe sea ice advance east of Newfoundland and south of Greenland, reaching as far as the Iceland Basin in the northeastern Atlantic at the climaxes of the cold events. Convection and deep-water formation in the northwestern Atlantic collapsed during the events, while the Atlantic Meridional Overturning Circulation was not substantially affected (weakening by only about 10 % and 5 %, respectively). The events were triggered by prolonged phases of a positive North Atlantic Oscillation that caused substantial changes in the subpolar ocean circulation and associated freshwater transports, resulting in a weakening of the subpolar gyre. Our results suggest a possible mechanism by which abrupt cold events in the North Atlantic region may be triggered by internal climate variability without the need of an external (e.g., solar or volcanic) forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3International Symposium on Data Assimilation, February 24-27, Munich, Germany
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...