GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Benson, A., Brooks, C. M., Canonico, G., Duffy, E., Muller-Karger, F., Sosik, H. M., Miloslavich, P., & Klein, E.. Integrated observations and informatics improve understanding of changing marine ecosystems. Frontiers in Marine Science, 5, (2018):428, doi:10.3389/fmars.2018.00428.
    Description: Marine ecosystems have numerous benefits for human societies around the world and many policy initiatives now seek to maintain the health of these ecosystems. To enable wise decisions, up to date and accurate information on marine species and the state of the environment they live in is required. Moreover, this information needs to be openly accessible to build indicators and conduct timely assessments that decision makers can use. The questions and problems being addressed demand global-scale investigations, transdisciplinary science, and mechanisms to integrate and distribute data that otherwise would appear to be disparate. Essential Ocean Variables (EOVs) and marine Essential Biodiversity Variables (EBVs), conceptualized by the Global Ocean Observing System (GOOS) and the Marine Biodiversity Observation Network (MBON), respectively, guide observation of the ocean. Additionally, significant progress has been made to coordinate efforts between existing programs, such as the GOOS, MBON, and Ocean Biogeographic Information System collaboration agreement. Globally and nationally relevant indicators and assessments require increased sharing of data and analytical methods, sustained long-term and large-scale observations, and resources to dedicated to these tasks. We propose a vision and key tenets as a guiding framework for building a global integrated system for understanding marine biological diversity and processes to address policy and resource management needs. This framework includes: using EOVs and EBVs and implementing the guiding principles of Findable, Accessible, Interoperable, Reusable (FAIR) data and action ecology. In doing so, we can encourage relevant, rapid, and integrative scientific advancement that can be implemented by decision makers to maintain marine ecosystem health.
    Description: We thank T.Malone and A. Knap for the invitation to contribute our ideas to this topic. We also thank the two reviewers and editor for their comments, which strengthened our manuscript.
    Keywords: ocean observing ; integrated assessments ; marine ecosystems ; data sharing ; essential ocean variables ; essential biodiversity variables ; FAIR data ; action ecology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Dataset: phytoplankton taxonomy
    Description: The CARIACO Ocean Time-Series Program (formerly known as CArbon Retention In A Colored Ocean) started on November 1995 (CAR-001) and ended on January 2017 (CAR-232). Monthly cruises were conducted to the CARIACO station (10.50° N, 64.67° W) onboard the R/V Hermano Ginés of the Fundación La Salle de Ciencias Naturales de Venezuela. The program studied the relationship between surface primary production, physical forcing variables like the wind, and the settling flux of particulate carbon in the Cariaco Basin. This depression, located on the continental shelf of Venezuela, shows marked seasonal and interannual variation in hydrographic properties and primary production (carbon fixation rates by photosynthesis of planktonic algae). One of the monthly measurements taken by the program was water sampling at different depths for phytoplankton taxonomy (occurrence and density). Those water samples were collected with Niskin bottles during the first CTD Cast of the morning at 1, 7, 25, 35, 75, and 100 m depth. Phytoplankton taxonomy and density was determined at each depth at the level of species or genera. Values of zero are real and denote that a specific species was not found at that cruise/depth. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/3095
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-9401537, NSF Division of Ocean Sciences (NSF OCE) OCE-9729697, NSF Division of Ocean Sciences (NSF OCE) OCE-0326268, NSF Division of Ocean Sciences (NSF OCE) OCE-9216626, NSF Division of Ocean Sciences (NSF OCE) OCE-9711318, National Aeronautics & Space Administration (NASA) NAS5-97128, NSF Division of Ocean Sciences (NSF OCE) OCE-9415790, NSF Division of Ocean Sciences (NSF OCE) OCE-9729284, National Aeronautics & Space Administration (NASA) NAG5-6448, NSF Division of Ocean Sciences (NSF OCE) OCE-0963028, NSF Division of Ocean Sciences (NSF OCE) OCE-0752139, Fondo Nacional de Ciencia, Tecnología e Innovación of Venezuela (FONACIT) 96280221, NSF Division of Ocean Sciences (NSF OCE) OCE-0326313, National Aeronautics & Space Administration (NASA) NNX14AP62A, Fondo Nacional de Ciencia, Tecnología e Innovación of Venezuela (FONACIT) 2000001702, Fondo Nacional de Ciencia, Tecnología e Innovación of Venezuela (FONACIT) 2011000353
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-21
    Description: Developing enduring capacity to monitor ocean life requires investing in people and their institutions to build infrastructure, ownership, and long-term support networks. International initiatives can enhance access to scientific data, tools and methodologies, and develop local expertise to use them, but without ongoing engagement may fail to have lasting benefit. Linking capacity development and technology transfer to sustained ocean monitoring is a win-win proposition. Trained local experts will benefit from joining global communities of experts who are building the comprehensive Global Ocean Observing System (GOOS). This two-way exchange will benefit scientists and policy makers in developing and developed countries. The first step toward the GOOS is complete: identification of an initial set of biological Essential Ocean Variables (EOVs) that incorporate the Group on Earth Observations (GEO) Essential Biological Variables (EBVs), and link to the physical and biogeochemical EOVs. EOVs provide a globally consistent approach to monitoring where the costs of monitoring oceans can be shared and where capacity and expertise can be transferred globally. Integrating monitoring with existing international reporting and policy development connects ocean observations with agreements underlying many countries' commitments and obligations, including under SDG 14, thus catalyzing progress toward sustained use of the ocean. Combining scientific expertise with international capacity development initiatives can help meet the need of developing countries to engage in the agreed United Nations (UN) initiatives including new negotiations for the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction, and the needs of the global community to understand how the ocean is changing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...