GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 280 (2013): 20130053, doi:10.1098/rspb.2013.0053.
    Description: Vocal learning is relatively common in birds but less so in mammals. Sexual selection and individual or group recognition have been identified as major forces in its evolution. While important in the development of vocal displays, vocal learning also allows signal copying in social interactions. Such copying can function in addressing or labelling selected conspecifics. Most examples of addressing in non-humans come from bird song, where matching occurs in an aggressive context. However, in other animals, addressing with learned signals is very much an affiliative signal. We studied the function of vocal copying in a mammal that shows vocal learning as well as complex cognitive and social behaviour, the bottlenose dolphin (Tursiops truncatus). Copying occurred almost exclusively between close associates such as mother–calf pairs and male alliances during separation and was not followed by aggression. All copies were clearly recognizable as such because copiers consistently modified some acoustic parameters of a signal when copying it. We found no evidence for the use of copying in aggression or deception. This use of vocal copying is similar to its use in human language, where the maintenance of social bonds appears to be more important than the immediate defence of resources.
    Description: This work was supported by a BBSRC Doctoral Training Grant, Dolphin Quest, the Chicago Zoological Society, the National Oceanic and Atmospheric Administration (NOAA) Fisheries Service, Disney’s Animals, Science and Environment, Dolphin Biology Research Institute, Mote Marine Laboratory, Harbor Branch Oceanographic Institute and a Royal Society University Research Fellowship and a Fellowship of the Wissenschaftskolleg zu Berlin to V.M.J.
    Keywords: Vocal learning ; Tursiops ; Imitation ; Communication
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 29 (2013): 109–122, doi:10.1111/j.1748-7692.2011.00549.x.
    Description: Bottlenose dolphins (Tursiops truncatus) have individually-distinctive signature whistles. Each individual dolphin develops its own unique frequency modulation pattern and uses it to broadcast its identity. However, underwater sound localization is challenging, and researchers have had difficulties identifying signature whistles. The traditional method to identify them involved isolating individuals. In this context, the signature whistle is the most commonly produced whistle type of an animal. However, most studies on wild dolphins cannot isolate animals. We present a novel method, SIGID, that can identify signature whistles in recordings of groups of dolphins recorded via a single hydrophone. We found that signature whistles tend to be delivered in bouts with whistles of the same type occurring within 1-10 s of each other. Non-signature whistles occur over longer or shorter periods, and this distinction can be used to identify signature whistles in a recording. We tested this method on recordings from wild and captive bottlenose dolphins and show thresholds needed to identify signature whistles reliably. SIGID will facilitate the study of signature whistle use in the wild, signature whistle diversity between different populations, and potentially allow signature whistles to be used in mark-recapture studies.
    Description: This work was supported by Dolphin Quest, National Oceanic and Atmospheric Administration (NOAA) Fisheries Service, Disney’s Animal Programs and Mote Marine Laboratory (R.S.W.), Harbor Branch Oceanographic Institute (L.S.S. and R.S.W.), and a Royal Society University Research Fellowship (V.M.J.).
    Keywords: Methods ; Signature whistle ; Communication ; Tursiops truncatus ; Bioacoustics ; Mark-recapture
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...