GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 123 (1996), S. 263-281 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  All six Holocene volcanic centers of the Andean Austral Volcanic Zone (AVZ; 49–54°S) have erupted exclusively adakitic andesites and dacites characterized by low Yb and Y concentrations and high Sr/Y ratios, suggesting a source with residual garnet, amphibole and pyroxene, but little or no olivine and plagioclase. Melting of mafic lower crust may be the source for adakites in some arcs, but such a source is inconsistent with the high Mg# of AVZ adakites. Also, the AVZ occurs in a region of relatively thin crust (〈35 km) within which plagioclase rather than garnet is stable. The source for AVZ adakites is more likely to be subducted oceanic basalt, recrystallized to garnet-amphibolite or eclogite. Geothermal models indicate that partial melting of the subducted oceanic crust is probable below the Austral Andes due to the slow subduction rate (2 cm/year) and the young age (〈24 Ma) of the subducted oceanic lithosphere. Geochemical models for AVZ adakites are also consistent with a large material contribution from subducted oceanic crust (35–90% slab-derived mass), including sediment (up to 4% sediment-derived mass, representing approximately 15% of all sediment subducted). Variable isotopic and trace-element ratios observed for AVZ adakites, which span the range reported for adakites world-wide, require multistage models involving melting of different proportions of subducted basalt and sediment, as well as an important material contribution from both the overlying mantle wedge (10–50% mass contribution) and continental crust (0–30% mass contribution). Andesites from Cook Island volcano, located in the southernmost AVZ (54°S) where subduction is more oblique, have MORB-like Sr, Nd, Pb and O isotopic composition and trace-element ratios. These can be modeled by small degrees (2–4%) of partial melting of eclogitic MORB, yielding a tonalitic parent (intermediate SiO2, CaO/Na2O〉1), followed by limited interaction of this melt with the overlying mantle (≥90% MORB melt, ≤10% mantle), but only very little (≤1%) or no participation of either subducted sediment or crust. In contrast, models for the magmatic evolution of Burney (52°S), Reclus (51°S) and northernmost AVZ (49–50°S) andesites and dacites require melting of a mixture of MORB and subducted sediment, followed by interaction of this melt not only with the overlying mantle, but the crust as well. Crustal assimilation and fractional crystallization (AFC) processes and the mass contribution from the crust become more significant northwards in the AVZ as the angle of convergence becomes more orthogonal.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-10
    Description: Atmosphere-ocean interactions play an important role for understanding processes and feedbacks in the Southern Ocean (SO) and are relevant for changes in Antarctic ice-sheets and atmospheric CO2 concentrations. The most important atmospheric forcing at high and mid-latitudes of the Southern Hemisphere is the westerly wind belt (SWW), which strongly affects the strength and extension of the Antarctic Circumpolar Current (ACC), upwelling of deep-water masses, and controls the back-flow of intermediate waters to the tropics. In order to address orbital and millennial-scale changes of the SWW and the ACC, we present sediment proxy records from the Pacific SO including the Chilean Margin and the Drake Passage. The Drake Passage (DP) represents the most important oceanic gateway along the ACC. Based on grain-size and geochemical properties of sediment records from the southernmost continental margin of South America, we reconstruct changes in DP throughflow dynamics over the past 65,000 years. In combination with published sediment records from the Scotia Sea and preliminary sediment records from the central Drake Passage (Polarstern cruise PS97, 2016), we argue for a considerable total reduction of DP transport and reveal an up to ~40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply a reduced Pacific-Atlantic exchange via the DP (“cold-water route”). The reduced Drake Passage glacial throughflow was accompanied by a pronounced northward extension of the Antarctic cold-water sphere in the Southeast Pacific sector and stronger export of northern ACC water into the South Pacific gyre. These oceanographic changes are consistent with reduced SWW within the modern maximum wind strength zone over the subantarctic ACC and reduced wind forcing due to extended sea-ice further south. Despite this reduction in winds in the core of the westerlies, we observe 3-fold higher dust deposition during glacial periods in Past Antarctic Ice Sheet Dynamics (PAIS) Conference September 10-15th 2017, Trieste - Italy the Pacific Southern Ocean (SO). This observation may be explained by a combination of factors including more expanded arid dust source areas in Australia and a northward extent or enhancement of the SWW over Southeast Australia during glacials that would plausibly increase the dust uptake and export into the Pacific SO. Such scenario would imply stronger SWW at the present northernmost margin of the wind belt coeval with weaker core westerlies in the south and reduced ACC strength, including Drake Passage throughflow during glacials. We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea-ice extent. Keywords: Pelagic Southern Ocean, Antarctic Circumpolar Current, Southern Westerlies, Teleconnections.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-16
    Description: Here we provide three new Holocene (11–0 cal ka BP) alkenone-derived sea surface temperature (SST) records from the southernmost Chilean fjord region (50–53°S). SST estimates may be biased towards summer temperature in this region, as revealed by a large set of surface sediments. The Holocene records show consistently warmer than present-day SSTs except for the past ~ 0.6 cal ka BP. However, they do not exhibit an early Holocene temperature optimum as registered further north off Chile and in Antarctica. This may have resulted from a combination of factors including decreased inflow of warmer open marine waters due to lower sea-level stands, enhanced advection of colder and fresher inner fjord waters, and stronger westerly winds. During the mid-Holocene, pronounced short-term variations of up to 2.5°C and a cooling centered at ~ 5 cal ka BP, which coincides with the first Neoglacial glacier advance in the Southern Andes, are recorded. The latest Holocene is characterized by two pronounced cold events centered at ~ 0.6 and 0.25 cal ka BP, i.e., during the Little Ice Age. These cold events have lower amplitudes in the offshore records, suggesting an amplification of the SST signal in the inner fjords.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Zeitschrift der Deutschen Gesellschaft für Geowissenschaften
    In:  EPIC3Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 164(2), pp. 279-294, ISSN: 1860-1804
    Publication Date: 2014-12-16
    Description: The southern tip of South America is year-round influenced by the southern westerly wind belt (SWW) causing extremely high precipitation along the Chilean coast and the Andes south of 33°S with maximum values of 3000 to 〉10 000 mm/year within the SWW core between 49 to 55°S which is unique for temperate regions on the global scale. Due to this key position within the global atmospheric and oceanic framework we have investigated a large number of Late Quaternary climate archives during the last decade including fjord and lake sediments, peats, stalagmites and tree rings. To improve our proxy understanding in these various archives, climate as well as hydrological monitoring stations were operated since 1999. Here we present one-year monitoring data, which document the short term variability of climate and thermohaline conditions and related fertility in the fjord surface water. In this context we also analysed the interplay between palaeo-precipitation and related freshening of surface water (low nitrate and phosphate) and the terrestrial nutrient supply to the fjords during the last 5 ka BP using new salinity and productivity proxies of a fjord sediment core. Lake sediment cores and a stalagmite record document high chemical denudation rates, and metal leaching occurs on a weakly buffered granitoid basement and areas covered by acidic peaty soils. The partly climate-controlled changes in the iron and trace metal mobility have profound implications for both terrestrial and aquatic ecosystems. Based on the investigated archives we also reviewed SWW changes and regional temperature variations during the past 30 ka BP and their implication for Glacial and Holocene glacier advances.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-08-10
    Description: Dust deposition in the Southern Ocean constitutes a critical modulator of past global climate variability, but how it has varied temporally and geographically is underdetermined. Here, we present data sets of glacial-interglacial dust-supply cycles from the largest Southern Ocean sector, the polar South Pacific, indicating three times higher dust deposition during glacial periods than during interglacials for the past million years. Although the most likely dust source for the South Pacific is Australia and New Zealand, the glacial-interglacial pattern and timing of lithogenic sediment deposition is similar to dust records from Antarctica and the South Atlantic dominated by Patagonian sources. These similarities imply large-scale common climate forcings, such as latitudinal shifts of the southern westerlies and regionally enhanced glaciogenic dust mobilization in New Zealand and Patagonia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    SCAR
    In:  EPIC3XXXIII Biennial Meetings, 2014 Open Science Conference, Auckland, New Zealand, 2014-08-25-2014-08-28SCAR
    Publication Date: 2018-08-10
    Description: The Antarctic Circumpolar Current (ACC) plays an essential role in the thermohaline circulation and global climate. Today, a large volume of ACC water passes through the Drake Passage, the major geographic constrain for the circumpolar flow. Here we present the first millennial-scale proxy records of Holocene and last glacial variations of the Drake Passage throughflow. Our study reports geochemical, paleomagnetic, and grain-size data from a sediment core retrieved from the upper continental slope off southernmost Chile. The site is located beneath the strong Cape Horn Current that transports northern ACC water towards the Drake Passage. Our data reveal large amplitude changes in current intensity proxy records suggesting pronounced variations in surface and sub-surface flow. We interpret these changes in terms of strongly reduced contributions of northern ACC water to the Drake Passage throughflow during the glacial in general and particularly during millennial-scale cold phases as known from e.g. Antarctic ice-cores. At the same time, advection of northern ACC water into the Humboldt current system was likely enhanced. These results support climate models showing largely reduced volume transport through the Drake Passage during the last glacial maximum and an increasing throughflow during the last deglaciation that affected the strengthening of the Atlantic Meridional Overturning Circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer International Publishing
    In:  EPIC3Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC), Springer International Publishing, pp. 75-81, ISSN: 2191-589X
    Publication Date: 2015-11-02
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...