GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Hauppauge :Nova Science Publishers, Incorporated,
    Keywords: Agricultural microbiology. ; Sustainable agriculture. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (340 pages)
    Edition: 1st ed.
    ISBN: 9781616680855
    DDC: 630/.279
    Language: English
    Note: Intro -- MICROBES IN SUSTAINABLE AGRICULTURE -- MICROBES IN SUSTAINABLE AGRICULTURE -- CONTENTS -- PREFACE -- FOREWORD -- Chapter 1 ROLE OF PHOSPHATE SOLUBILIZING MICROORGANISMS IN SUSTAINABLE AGRICULTURE -- ABSTRACT -- 1. INTRODUCTION -- 2. URGENT NEED FOR PHOSPHATE SOLUBILIZING MICROORGANISMS IN PLANT PHOSPHATE NUTRITION -- 3. NATURE OF PHOSPHATIC BIOFERTILIZERS -- 3.1. Phosphate Solubilizing Microorganisms -- 3.1.1. Search for Phosphate Solubilizing Microorganisms -- 3.1.2. Mechanism of Phosphate Solubilization- an Overview -- 3.1.3. Production of Phosphate Solubilizing Microorganism Inoculants -- 3.2. Mycorrhizae -- 4. PHOSPHATE SOLUBILIZING MICROORGANISMS AS INOCULANTS FOR SUSTAINABLE AGRICULTURE -- 5. HOW IS PHOSPHATE SOLUBILIZING MICROORGANISMS APPLIED? -- 6. FACTORS AFFECTING THE SURVIVAL OF PHOSPHATE SOLUBILIZING MICROORGANISM INOCULANTS -- 7. CROP RESPONSE TO COMPOSITE INOCULATIONS -- 7.1. Interaction between Phosphate Solubilizing and Nitrogen Fixing Organisms -- 7.2. Symbioses between Phosphate Solubilizing Organism and Arbuscular Mycorrhizal Fungi -- 7.3. Tripartite Symbioses between N2 Fixers, P solubilizers, and AM- Fungi -- 8. WHY PHOSPHATE SOLUBILIZING MICROORGANISM INOCULATIONS FAIL? -- 9. APPLICATION OF GENETIC ENGINEERING IN DEVELOPING SUPER PHOSPHATE SOLUBILIZING MICROBIAL INOCULANTS -- 10. CONCLUSION -- REFERENCES -- Chapter 2 BACTERIAL ENDOPHYTES AND THEIR ROLE IN AGRICULTURE -- ABSTRACT -- 1. INTRODUCTION -- 2. MODE OF PLANT COLONIZATION -- 3. HOW DO ENDOPHYTES DIFFER FROM POTENTIAL BACTERIAL PLANT PATHOGENS? -- 4. OCCURRENCE -- 5. MECHANISMS OF PLANT GROWTH PROMOTION AND APPLICATION IN AGRICULTURE -- 5.1. How an Endophytic Bacteria is Advantageous in Plant Growth Promotion than a Rhizosphere Dweller? [Lodewyckx et al. 2002] -- 5.2. Direct Mechanism -- 5.2.1. N Fixation. , 5.2.2. Production of Plant Growth Hormones and Growth Modulating Enzyme -- 5.2.3. Growth Modulation Enzyme -- 5.2.4 .Phosphorus (P) and other Minerals Solubilization -- 5.3. Indirect Plant Growth Promotion Mechanisms -- 5.3.1. Mineral Uptake Enhancement -- 5.3.2 .Siderophore Production -- 5.3.3. Antibiosis and other Mechanisms -- 6. ENDOPHYTIC BACTERIA ASSOCIATED WITH PLANTS EMPLOYED IN PHYTOREMEDIATION -- 7. CONCLUSION -- ACKNOWLEDGEMENTS -- REFERENCES -- Chapter 3 BIOREMEDIATION OF HEAVY METALS BY PLANT GROWTH PROMOTING RHIZOBACTERIA -- ABSTRACT -- 1. INTRODUCTION -- 2. RHIZOSPHERE AND PLANT GROWTH PROMOTING RHIZOBACTERIA -- 2.1. Search for Plant Growth Promoting Rhizobacteria for Metal Remediation -- 2.2. Mechanism of Growth Promotion by PGPR- An Overview -- 3. HEAVY METAL REMEDIATION -- 3.1. Soil Contamination Sources -- 3.2. Metal Toxicity to PGPR and Mechanism of Heavy Metal Resistance -- 3.3. Heavy Metal Remediation Strategies -- 3.3.1. Heavy Metal Removal from Contaminated Sites -- 3.3.2. What is Bioremediation? -- 3.3.2.1. Advantages and Limitations of Bioremediation -- 3.3.3. Bioremediation Technologies -- 3.4.3. Remediation of Heavy Metals by PGPR -- 3.5. Biotransformation -- 3.5.1. Chromium Detoxification -- 3.5.2. Mechanism of Hexavalent Chromium Reduction -- 3.6. Bioaccumulation and Biosorption -- 3.7. Phytoremediation -- 3.7.1. Mechanism of Phytoremediation -- 3.7.2. PGPR Assisted Phytoremediation -- 4. CONCLUSION -- REFERENCES -- Chapter 4 CONTRIBUTION OF ARBUSCULAR MYCORRHIZAL FUNGI AND PLANT GROWTH-PROMOTING RHIZOBACTERIA TO PLANT HEALTH AND DEVELOPMENT -- ABSTRACT -- 1. INTRODUCTION -- 2. SOIL MICROBIAL INTERACTIONS IN AGROSYSTEMS: THE RHIZOSPHERE -- 3. ARBUSCULAR MYCORRHIZAL FUNGI -- 3.1. Effects on Plant Growth -- 3.1.1. Use of Mineral Resources -- 3.1.2. Use of Water Resources -- 3.1.3. Alleviating Abiotic Stress. , 3.2. Effect on Plant Health -- 3.2.1. Enhancement of Plant Nutrient Status and Damage Compensation -- 3.2.2. Competence for Photosynthates and Colonization Sites -- 3.2.3. Changes in Radical Architecture, Anatomy and Longevity -- 3.2.4. Microbial Changes in the Rhizosphere -- 3.2.5. Activation of Host Plant Defence Response -- 4. PLANT GROWTH-PROMOTING RHIZOBACTERIA -- 4.1. Effects on Plant Growth -- 4.1.1. Production of Phytohormones -- 4.1.2. Use of Mineral Resources -- 4.2. Effects on Plant Health -- 4.2.1. Antibiosis -- 4.2.2. Competence -- 4.2.3. Induced Systemic Resistance -- 5. INTERACTIONS BETWEEN AM FUNGI AND PGPR -- 6. INFLUENCE OF CULTURAL PRACTICES ON RHIZOSPHERE MICROBIOTA -- 6.1. Tillage -- 6.2. Crop Rotation -- 6.3. Fertilizers -- 6.4. Pesticides -- 6.5. Plant Breeding -- 7. CONCLUSION -- REFERENCES -- Chapter 5 ROLE OF QUORUM SENSING IN RHIZOBIUM-LEGUME SYMBIOSIS -- ABSTRACT -- 1. INTRODUCTION -- 2. QUORUM SENSING MOLECULES -- 3. BIOLOGICAL FUNCTIONS OF QUORUM SENSING -- 4. MOLECULAR MECHANISM OF QUORUM SENSING -- 4.1. Rhizobial Molecules as Promoters of Plant Growth -- 4.2. Rhizobium-legume Symbiotic Interaction- General Overview -- 4.3. Role of Plasmids in Rhizobium-legume Symbiosis -- 4.4. Role of QS in Rhizobium-legume Symbiosis -- 4.4.1. QS in Bradyrhizobium -- 4.4.2. QS in Sinorhizobium -- 5. COMMUNICATION IN A COMPLEX WORLD -- 6. MEASURING QUORUM SENSING -- 7. CONCLUSION -- REFERENCES -- Chapter 6 ROLE OF MYCORRHIZAE IN PLANT NUTRITION -- ABSTRACT -- 1. INTRODUCTION -- 1.1. Structures -- 1.2. Distribution -- 1.3. Classification -- 1.4. Importance -- 2. ROLE OF AM FUNGI IN PLANT NUTRITION -- 2.1. Phosphorus Nutrition -- 2.1.1. Uptake of P from Soil Solution -- 2.1.2. Uptake from Insoluble Inorganic P Sources -- 2.1.3. Uptake from Insoluble Organic P Sources -- 2.1.4. P Transporters in AM Fungi -- 2.2. Nitrogen Nutrition. , 2.2.1. Absorption of Inorganic Nitrogen Compound -- 2.2.2. Absorption of Organic Nitrogen Compound -- 2.2.3. Assimilation of Nitrogen -- 2.2.4. Assistance in Biological N2-fixation -- 2.3. Other Elements -- 3. CONCLUSION -- REFERENCES -- Chapter 7 ROLE OF SIDEROPHORES IN PLANT DISEASE SUPPRESSION -- ABSTRACT -- 1. INTRODUCTION -- 2. SIDEROPHORES: BIOLOGICAL SENSOR OF IRON NUTRITION -- 2.1. Functions of Siderophores -- 2.2. Chemistry of Siderophores -- 2.2.1. Hydroxamate Siderophores -- 2.2.2. Catecholate Siderophores -- 2.3. Application of Siderophores -- 2.3.1. Microbial Siderophore Mediated Iron Uptake -- 2.3.2. Ecological Aspects of Siderophores -- 2.3.3. Siderophores Virulence and Clinical Application -- 2.3.4. Siderophore Mediated Disease Suppression -- 2.3.4.1. Agronomic Aspects -- 3. PHYTOSIDEROPHORES -- 4. CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- Chapter 8 RHIZOREMEDIATION OF HEAVY METALS BY SYMBIOTIC NITROGEN FIXING MICROORGANISMS -- ABSTRACT -- 1. INTRODUCTION -- 2. CHEMICAL AND BIOLOGICAL AVAILABILITY OF METALS IN SOIL -- 3. RHIZOBIUM-LEGUME SYMBIOSIS - AN OVERVIEW -- 4. METAL TOXICITY TO RHIZOBIUM-LEGUME SYMBIOSIS -- 5. HOW RHIZOBIA COMBAT HEAVY METAL STRESS? -- 6. GROWTH PROMOTING ACTIVITY OF METAL TOLERANT RHIZOBIA -- 7. RHIZOREMEDIATION AFFECTING LEGUME GROWTH -- 8. CONCLUSION -- REFERENCES -- Chapter 9 GENETIC INSTABILITY AND NODULATION FLUX IN LEGUME INOCULANTS -- ABSTRAT -- 1. INTRODUCTION -- 2. LEGUME SYMBIONTS -- 3. LEGUME INOCULANTS -- 3.1. Essentials of a Carrier and Inoculant -- 4. GENETIC INSTABILITY AND NODULATION FLUX: RATIONALE AND REASONS -- 4.1. Natural Variations in the Cultures -- 4.1.1. Colony Di/polymorphism -- 4.1.2. Colony Variants or Derivatives -- 4.1.3. Spontaneous Mutations -- 4.1.4. Genomic Rearrangements -- 4.1.5. Instability, Rearrangements or Recombination in Symbiotic Plasmid. , 4.1.6. Horizontal Gene Transfer -- 4.1.7. Ineffective Strains -- 4.2. Environmental Stress -- 4.2.1. Abiotic Factors -- 4.2.1.1. Temperature -- 4.2.1.2. Soil pH: Legumes and their Rhizobia Exhibit Varied Responses to Acidity -- 4.2.1.3. Salinity -- 4.2.1.4. Nutrients -- 4.2.1.4.1. Ions -- 4.2.1.4.2. Phosphorus -- 4.2.1.4.3. Aluminium and Cobalt -- 4.2.1.4.4. Root Environment and Exudates -- 4.2.1.4.5. Agrochemicals -- 4.2.1.4.6. Water -- 4.2.2. Biotic Factors -- 4.2.2.1. Strain Competition -- 4.2.2.2. Bacteriocins/toxicants -- 4.3. Host Factors -- 4.4. Viability and Inoculant Quality -- 4.5. Storage Conditions -- 4.5.1. Culture Media/conditions/sub Culturing -- 4.5.2. Long-term Storage -- 4.6. Agronomic Practices -- 5. CONCLUSION -- REFERENTES -- Chapter 10 PESTICIDE USE IN AGRICULTURE AND MICROORGANISMS -- ABSTRACT -- 1. INTRODUCTION -- 2. PESTICIDAL RISK -- 2.1. Pesticides Affecting Microbes and Plants -- 2.2. Pesticides in Water and Water Bodies -- 2.3. Pesticides Toxicity and the Food Chain -- 3. PESTICIDES DEGRADATION -- 4. PESTICIDE PERSISTENCE -- 5. PESTICIDE ENZYMOLOGY -- 6. CONCLUSION -- REFERENCES -- Chapter 11 REMEDIATION OF HERBICIDES CONTAMINATED SOIL USING MICROBES -- ABSTRACT -- 1. INTRODUCTION -- 2. HERBICIDES AFFECTING SOIL MICROORGANISMS -- 3. HERBICIDE TOXICITY TO CROPS -- 4. BIOREMEDIATION -- 4.1. General Perspective -- 4.2. Bioremediation of Herbicides -- 4.2.1. Degradation of S-triazine Compounds -- 4.2.1.1. Microbial Catabolism of S-triazine Compounds -- 4.2.1.2. Microbial Catabolism of More Complex S-triazine Compounds -- 4.2.2. Phenoxyacetate Herbicides -- 4.2.2.1. 1,4,5-trichlorophenoxy Acetic Acid -- 5. CONCLUSION -- REFERENCES -- Chapter 12 BIOLOGICAL CONTROL OF PLANT DISEASES USING ACTINOMYCETES (STREPTOMYCES SPP.) FOR SUSTAINABLE AGRICULTURE -- ABSTRACT -- 1. INTRODUCTION -- 2. WHAT ARE ACTINOMYCETES?. , 3. ROLE OF ACTINOMYCETES IN RHIZOSPHERE SOILS.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Vienna :Springer Wien,
    Keywords: Bioremediation. ; Electronic books.
    Description / Table of Contents: This book discusses various effects of heavy metal exposure to legumes, as well as the bioremediation potential of rhizosphere microbes. The text presents the availability of heavy metals, their uptake and the effects of metals on various signaling pathways within legumes.
    Type of Medium: Online Resource
    Pages: 1 online resource (255 pages)
    Edition: 1st ed.
    ISBN: 9783709107300
    DDC: 363.73846
    Language: English
    Note: Intro -- Toxicity of Heavy Metals to Legumes and Bioremediation -- Preface -- Contents -- Contributors -- Soil Contamination, Nutritive Value, and Human Health Risk Assessment of Heavy Metals: An Overview: -- 1.1 Introduction -- 1.2 Source of Heavy Metal in Soils -- 1.3 Metal Bioavailability -- 1.4 Heavy Metal as Nutrient: An Overview -- 1.4.1 Heavy Metals Importance in Microorganisms -- 1.4.2 Some Examples of Metals Important for Plant Health -- 1.5 Heavy Metal Toxicity: A Brief Account -- 1.5.1 Effects of Heavy Metals on Microbial Diversity -- 1.5.2 Heavy Metals-Plants Interactions -- 1.5.3 Metal Impact on Human Health -- 1.6 Human Health Risk Assessment: A General Perspective -- 1.6.1 What Is Human Health Risk Assessment? -- 1.6.2 Why We Do Assessment and What Is Risk Assessment Process? -- 1.6.3 Why Food Materials Are Used for Human Health Risk Assessment? -- 1.6.3.1 Vegetables as a Model Food for Human Health Risk Assessment: Why? -- 1.6.4 What Are Different Risk Assessments Methods? -- 1.6.4.1 Hazard Quotient -- 1.6.4.2 Daily Dietary Index -- 1.6.4.3 Daily Intake of Metals -- 1.6.4.4 Health Risk Index -- References -- Heavy Metal Toxicity to Symbiotic Nitrogen-Fixing Microorganism and Host Legumes: -- 2.1 Introduction -- 2.2 What Are Nitrogen-Fixing Microbes? -- 2.3 Rhizobium-Legume Pairing: An Overview -- 2.4 How Rhizobia Promote Legume Growth? -- 2.5 Heavy Metal Toxicity: A General Perspective -- 2.5.1 Are Legumes Safe to Grow in Metal Contaminated Soils? -- References -- Toxic Effects of Heavy Metals on Germination and Physiological Processes of Plants: -- 3.1 Introduction -- 3.2 Metal Uptake, Translocation, and Accumulation -- 3.3 Toxicity of Heavy Metals to Plants -- 3.3.1 How Heavy Metals Act -- 3.3.2 Seed Germination and Physiological Processes Affected by Heavy Metals -- 3.3.2.1 Legume Germination Under Metal Stress. , 3.3.2.2 Physiological Processes Affected by Heavy Metals -- Cell Wall and Plasma Membrane -- Lipid Peroxidation -- Photosynthesis -- Water Relations -- Nitrate Reductase -- Denitrification Activity -- Antioxidant Defenses -- References -- Chromium-Plant-Growth-Promoting Rhizobacteria Interactions: Toxicity and Management: -- 4.1 Introduction -- 4.2 Source of Chromium -- 4.3 Chromium-PGPR Interactions -- 4.4 Bioremediation: A General View -- 4.5 Management of Chromium Toxicity Using PGPR -- 4.6 Mechanism of Hexavalent Chromium Reduction -- 4.6.1 Direct Mechanism -- 4.6.2 Indirect Mechanism of Chromium Reduction -- 4.7 Factors Affecting Chromium Reduction -- 4.7.1 pH -- 4.7.2 Chromium Concentration -- 4.7.3 Effect of Temperature -- 4.7.4 Glucose and NaCl Concentration -- References -- The Influence of Glutathione on the Tolerance of Rhizobium leguminosarum to Cadmium: -- 5.1 Heavy-Metal Soil Contamination -- 5.2 Nitrogen Fixation by Rhizobia -- 5.3 The Influence of GSH on Rhizobium leguminosarum Tolerance to Cadmium -- 5.4 Chronological Dependence of GSH Synthesis from Cd Intracellular Levels -- 5.5 BNF and Plant Tolerance to Heavy Metals -- References -- Bioremediation: A Natural Method for the Management of Polluted Environment: -- 6.1 Introduction -- 6.2 Can Biotechnology Be Useful in Pollution Management? -- 6.3 Bioremediation: An Emerging Option -- 6.3.1 Rationale for Using Bioremediation in Metal Decontamination -- 6.3.2 Types of Bioremediation -- 6.3.2.1 In Situ Bioremediation -- 6.3.2.2 Ex Situ Bioremediation -- 6.3.3 Some Examples of Bacteria-Mediated Bioremediation -- 6.3.4 Bacteria-Assisted Phytoremediation -- References -- Rhizobium-Legume Symbiosis: A Model System for the Recovery of Metal-Contaminated Agricultural Land: -- 7.1 Introduction -- 7.2 Source of Heavy Metals in Agricultural Fields. , 7.3 Mechanisms of Heavy Metal Resistance in Rhizobia -- 7.4 Rhizobium-Legume Symbioses as Phytoremediator -- 7.5 Importance of Recombinant Rhizobia in Heavy Metal Bioremediation -- References -- Microbially Mediated Transformations of Heavy Metals in Rhizosphere: -- 8.1 Introduction -- 8.2 Plant Growth Effect on Microbial Rhizosphere Population -- 8.3 Mobilization of Bioavailable Pool of Heavy Metals in Rhizosphere -- 8.4 Effects of HM on Soil Microorganisms -- 8.5 Effect of Microbial Activity on Metal Toxicity to Plants -- 8.6 Phytoremediation of Metal-Contaminated Soil -- 8.7 Immobilization of HM in the Rhizosphere -- References -- Rhizoremediation: A Pragmatic Approach for Remediation of Heavy Metal-Contaminated Soil: -- 9.1 Introduction -- 9.2 Soil Pollution -- 9.3 Heavy Metal Toxicity -- 9.4 Soil Remediation Approaches -- 9.4.1 Physicochemical Methods -- 9.4.2 Bioremediation -- 9.4.2.1 Phytoremediation -- 9.4.2.2 Rhizoremediation -- 9.5 Plant Growth-Promoting Activities of PGPR -- 9.5.1 Heavy Metal Stress Tolerance -- 9.5.2 Mineral Uptake -- 9.6 Eco-economics -- References -- Role of Plant-Growth-Promoting Rhizobacteria in the Management of Cadmium-Contaminated Soil: -- 10.1 Introduction -- 10.2 Cadmium Features -- 10.3 Source of Cadmium -- 10.3.1 Soil -- 10.3.2 Compost and Vegetables -- 10.4 Cadmium Poisoning -- 10.4.1 Clinical Effects of Cadmium -- 10.4.2 Cadmium Toxicity to Plants -- 10.5 Bioremediation and PGPR -- 10.6 Importance of Plant-Growth-Promoting Rhizobacteria in Plant Growth -- 10.7 Problems and Perspective of PGPR in Commercialization -- References -- Site-Specific Optimization of Arbuscular Mycorrhizal Fungi Mediated Phytoremediation: -- 11.1 Soil Pollution and Its Treatment: A General Perspective -- 11.2 AM Fungi as Potential Tool for Phytoremediation -- 11.3 Choosing Remedial Technology -- 11.4 Selection of Host Plants. , 11.4.1 Metal Tolerance of Plants -- 11.4.2 Non-mycotroph or Unconcerned Hyperaccumulating Species -- 11.4.3 Choosing Indigenous or Exogenous (Cultivated) Plant Species -- 11.4.4 Advantages and Disadvantages of Trees -- 11.5 Selecting Infective and Effective AM Fungi -- 11.5.1 The Effect of HMs on the Abundance and Vitality of AMF -- 11.5.2 Investigating the AMF Community of the Polluted Area -- 11.6 Effect of HM-Adapted and HM Non-adapted AMF on Host Tolerance: A Comparative Study -- 11.7 The Impact of Intra- and Interspecific Variability of AMF on Metal Uptake -- 11.8 Sustaining Heavy Metal Tolerance and Inducing Artificial Adaptation -- References -- Heavy Metal Resistance in Plants: A Putative Role of Endophytic Bacteria: -- 12.1 Introduction -- 12.2 Endophytic Bacteria: Tolerance to Heavy Metals -- 12.3 The Alleviation of Metal Toxicity in Plants -- 12.3.1 Oxidative Stress Protection -- 12.3.2 Indirect Reduction of Heavy-Metal Toxicity -- 12.3.3 Phytohormone-Mediated Defense Effects -- 12.4 Endophytic Bacteria: Importance in Phytoremediation Technologies -- References -- Importance of Arbuscular Mycorrhizal Fungi in Legume Production Under Heavy Metal-Contaminated Soils: -- 13.1 Introduction -- 13.2 Negative Influence of Heavy Metal Toxicity to Legumes -- 13.3 Incidence of Arbuscular Mycorrhizal Fungi in Metal-Polluted Sites -- 13.4 Variation Among AMF to HM(s) Tolerance -- 13.5 The Role of AMF in Imparting Metal Tolerance to Legume Plants -- 13.6 Composite Inoculation Effects of AM Fungi on Legume Plants Grown in Metal-Contaminated Soils -- 13.7 Factors Affecting AMF in Metal-Polluted Sites -- 13.8 Mechanisms of Heavy Metal Tolerance -- References -- About the Editors -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Soil pollution. ; Electronic books.
    Description / Table of Contents: This book, written by worldwide experts, provides the necessary scientific background and addresses the challenging questions in order to better understand metal toxicity in various ecosystems and its management through bioremediation.
    Type of Medium: Online Resource
    Pages: 1 online resource (522 pages)
    Edition: 1st ed.
    ISBN: 9789400719149
    Series Statement: Environmental Pollution Series ; v.20
    DDC: 628.55
    Language: English
    Note: Intro -- Biomanagement of Metal-Contaminated Soils -- Preface -- Contents -- Contributors -- Chapter 1: Heavy Metal Pollution: Source, Impact, and Remedies -- 1.1 Introduction -- 1.2 Sources of Heavy Metals -- 1.2.1 Natural Sources -- 1.2.2 Anthropogenic Sources -- 1.2.3 Activities Generating Heavy Metals -- 1.3 Nature of Heavy Metal Pollution -- 1.3.1 Heavy Metals and Air Pollution -- 1.3.2 Water Pollution -- 1.3.3 Soil Pollution -- 1.4 Impacts of Heavy Metals -- 1.4.1 Impact on the Environment -- 1.4.2 Heavy Metal Toxicity -- 1.4.3 Health Hazards -- 1.5 Abatement of Heavy Metals Pollution -- 1.5.1 Physicochemical Methods -- 1.5.2 Biochemical Methods -- 1.5.2.1 Heavy Metals and Microorganisms -- 1.5.2.2 Biosorption and Floatation -- 1.5.2.3 Biotransformation -- 1.5.2.4 Pollution Monitoring Biosensors -- 1.5.2.5 Bioremediation -- 1.5.3 Phytoremediation -- 1.6 Genetic Engineering: The Way Forward -- 1.7 Conclusion -- References -- Chapter 2: Metal-Plant Interactions: Toxicity and Tolerance -- 2.1 Introduction -- 2.2 Plant Structure -- 2.3 Metal Uptake and Transport -- 2.3.1 Metal Bioavailability -- 2.3.2 Root Uptake -- 2.3.3 Foliar Uptake -- 2.4 Metal Phytomtoxicity -- 2.4.1 Visible Symptoms -- 2.4.2 Physiological Changes -- 2.4.2.1 Inhibition of Germination -- 2.4.2.2 Decreased Growth -- 2.4.2.3 Membrane Damage -- 2.5 Inhibition of Physiological Processes -- 2.5.1 Oxidative Damage in Plants -- 2.5.2 Photosynthesis -- 2.5.3 Water Relations -- 2.5.4 Nutrient Deficiency -- 2.6 Metal Essentiality and Toxicity -- 2.7 Toxicity Sequence -- 2.8 Metal Tolerance Mechanisms -- 2.8.1 Metal Accumulation -- 2.8.2 Metal Detoxification -- 2.8.3 Antioxidant Response -- 2.9 Enhancing Metal Tolerance -- 2.9.1 Chelators -- 2.9.2 Phytohormones -- 2.9.3 Importance of Microorganisms in Metal Removal -- 2.10 Conclusion -- References. , Chapter 3: Bioremediation: New Approaches and Trends -- 3.1 Introduction -- 3.2 Remediation Technologies -- 3.2.1 Bioremediation -- 3.2.1.1 Ex-Situ Bioremediation -- 3.2.1.2 In-Situ Bioremediation -- 3.3 Phytoremediation -- 3.3.1 General Advantages of Phytoremediation -- 3.3.2 General Limitations of Phytoremediation -- 3.4 Phytoremediation Strategies -- 3.4.1 Phytoextraction -- 3.4.2 Rhizofiltration -- 3.4.3 Phytostabilization -- 3.4.4 Phytodegradation -- 3.4.5 Rhizodegradation -- 3.4.6 Phytovolatilization -- 3.5 Environmental Factors Affecting Phytoremediation -- 3.5.1 Soil Types and Organic Matter Contents -- 3.5.2 Soil Water/Moisture -- 3.5.3 Temperature -- 3.5.4 Light -- 3.5.5 Weathering Process -- 3.6 Techniques Used to Enhance Phytoremediation Process -- 3.6.1 Chelator-Induced Phytoextraction -- 3.6.2 Plant Growth Regulators -- 3.6.3 Plant Growth-Promoting Rhizobacteria -- 3.6.3.1 Remediation of Heavy Metals by PGPR -- 3.6.3.2 Remediation of Organic Contaminants by PGPR -- 3.7 Breakthroughs in Phytoremediation: Novel Transgenic Approaches -- 3.7.1 Metallothioneins, Phytochelatins, and Metal Chelators -- 3.7.2 Metal Transporters -- 3.7.3 Alteration of Metabolic Pathways -- 3.7.4 Alteration of Oxidative Stress Mechanisms -- 3.7.5 Alteration in Roots -- 3.7.6 Alteration in Biomass -- 3.8 Example of Genetically Engineered Plant -- 3.8.1 Mercury Detoxification Using Transgenic Plants -- 3.9 Conclusion -- References -- Chapter 4: Legume- Rhizobium Symbioses as a Tool for Bioremediation of Heavy Metal Polluted Soils -- 4.1 Introduction -- 4.2 The Legume- Rhizobium Symbiotic Interaction -- 4.2.1 Promotion of the Bacterial Infection -- 4.2.2 Bacterial Infection -- 4.2.3 Nodule Formation -- 4.3 The Legume- Rhizobium Symbiosis as a Tool for Bioremediation -- 4.3.1 The Microsymbiont and Heavy Metals -- 4.3.2 Examples of Heavy Metal Resistance in Rhizobia. , 4.3.2.1 Arsenic Resistance in Rhizobium Strains -- 4.3.2.2 Cadmium Resistance in Rhizobium Strains -- 4.3.2.3 Nickel Resistance Determinants in Rhizobium Strains -- 4.3.2.4 Resistance Against Chromium in Rhizobium -- 4.3.3 Nodulation Efficiency of Metal Resistant Rhizobia -- 4.3.4 Non-rhizobial Bacteria Nodulates Legumes Under Heavy Metal Stress -- 4.3.5 Legumes and Heavy Metals -- 4.3.5.1 Accumulation of Heavy Metals in Legume Plants -- 4.4 Effect of Heavy Metals on the Legume- Rhizobium Symbiotic Interaction -- 4.5 Application of Legume- Rhizobium Symbioses in Metal-contaminated Soils -- 4.6 Engineering Legume- Rhizobium Symbiosis for Improving Bioremediation -- 4.7 Conclusion -- References -- Chapter 5: Importance of Arbuscular Mycorrhizal Fungi in Phytoremediation of Heavy Metal Contaminated Soils -- 5.1 Introduction -- 5.2 Arbuscular Mycorrhizal Fungi: An Overview -- 5.3 AM-Fungi-Assisted Phytoremediation -- 5.3.1 Occurrence of AM-Fungi in Heavy Metal Contaminated Soil -- 5.3.2 Does Mycorrhizal Plants Exhibit Enhanced Tolerance to Heavy Metals? -- 5.3.3 Contribution of AM-Fungi in Phytostabilization -- 5.3.4 Importance of AM-Fungi in Phytoextraction -- 5.4 Conclusion -- References -- Chapter 6: Research Advances in Bioremediation of Soils and Groundwater Using Plant-Based Systems: A Case for Enlarging and Updating Information and Knowledge in Environmental Pollution Management in Developing Countries -- 6.1 Introduction -- 6.2 Types, Sources, and Effects of Soil and Groundwater Pollutants -- 6.3 Phytoremediation: A Type of Plant-Assisted Bioremediation -- 6.4 Necessity for Sustained Bioremediation Research and Development -- 6.5 Conclusion -- References -- Chapter 7: The Bacterial Flora of the Nickel-Hyperaccumulator Plant Alyssum bertolonii -- 7.1 Botany and Life History of Alyssum bertolonii. , 7.2 Plant-Associated Bacteria : Which, Why, for What? -- 7.3 Soil and Rhizosphere Bacteria Involved in Metal Detoxification -- 7.3.1 Endophytic Bacteria -- 7.4 Conclusion and Perspectives -- References -- Chapter 8: Use of Biosurfactants in the Removal of Heavy Metal Ions from Soils -- 8.1 Introduction -- 8.2 Biosurfactants -- 8.2.1 Critical Micelle Concentration -- 8.2.2 Rhamnolipids -- 8.2.3 Surfactin -- 8.2.4 Saponin -- 8.2.5 Sophorolipids -- 8.2.6 Aescin -- 8.3 Heavy Metal Sorption on Soils -- 8.3.1 Comparison of Metal Sorption on Various Soils and/or Components -- 8.4 Heavy Metal Binding Mechanisms of Biosurfactants from Soil -- 8.4.1 Effect of pH -- 8.5 Biosurfactant Sorption onto Soils -- 8.6 Examples of Heavy Metal Removal from Soils Using Biosurfactants -- 8.7 Biosurfactant Foam Technologies -- 8.8 Role of Biosurfactants in Biofilm Formation and Use of Biofilms in Heavy Metal Bioremediation -- 8.9 Recent Use of Biosurfactants in Nanotechnology -- 8.10 Kinetic Modeling of Desorption -- 8.10.1 Sorption-Desorption Equilibrium -- 8.11 Conclusion and Future Prospect -- References -- Chapter 9: Mechanism of Metal Tolerance and Detoxification in Mycorrhizal Fungi -- 9.1 Introduction -- 9.2 Metal Tolerance/Detoxification in Mycorrhizal Fungi -- 9.2.1 Extracellular Mechanisms -- 9.2.1.1 Heavy Metal Chelation by Organic and/or Inorganic Ligands -- 9.2.2 Intracellular Mechanisms -- 9.2.2.1 Metal Complexation by Polyphosphate Granules -- 9.2.2.2 Vacuolar Compartmentalization by PCs and MTs -- 9.2.2.3 Transporter Proteins Involved in Metal Tolerance -- 9.2.2.4 Antioxidative Mechanisms to Combat Metal-Induced Oxidative Stress -- 9.3 Prospects of Genetic Engineering in Metal Remediation -- 9.4 Conclusion -- References -- Chapter 10: Metal Signaling in Plants: New Possibilities for Crop Management Under Cadmium-Contaminated Soils -- 10.1 Introduction. , 10.1.1 Stress Signal Transduction Mechanisms in Plants -- 10.1.2 Most Stress Signaling Mechanisms Share the Same Components -- 10.1.3 Metal Stress in Plants -- 10.1.4 Metal Signal Transduction in Plants - Possible Pathways -- 10.1.5 Possible Points in PC Signaling Regulation -- 10.2 Calcium Signaling in Cadmium Stress -- 10.2.1 The Role of Calcium -- 10.2.2 Calcium Influences Cadmium Uptake but Also PC Synthesis -- 10.3 Protein Phosphorylation Signaling in Metal Stress -- 10.3.1 The Role of Protein Phosphatases -- 10.3.2 Protein Phosphatase Inhibition Increases Cadmium Tolerance by Enhancing PC Synthesis -- 10.4 Conclusion -- References -- Chapter 11: Microbial Management of Cadmium and Arsenic Metal Contaminants in Soil -- 11.1 Introduction -- 11.2 Sources of Cadmium and Arsenic in Soil -- 11.2.1 Cadmium -- 11.2.2 Arsenic -- 11.3 Possible Impacts of Cadmium and Arsenic Metal Contaminants -- 11.3.1 Cadmium Toxicity -- 11.3.2 Arsenic Toxicity -- 11.4 Mechanism of Bacterial Resistance to Heavy Metals: An Overview -- 11.4.1 Bacterial Resistance to Cadmium -- 11.4.1.1 P-type ATPase -- 11.4.1.2 CBA Transporters -- 11.4.1.3 CDF Family Transporters -- 11.4.2 Bacterial Resistance to Arsenic -- 11.5 Influence of Microbes on Speciation and Mobility of Arsenic and Cadmium -- 11.6 Conclusion -- References -- Chapter 12: Phytotechnologies: Importance in Remediation of Heavy Metal-Contaminated Soils -- 12.1 Introduction -- 12.2 Phytoremediation: A Natural Way for Restoration of Polluted Soils -- 12.2.1 Advantages and Limitations of Phytotechnologies -- 12.2.2 Phytoextraction -- 12.2.2.1 Economics of Phytoextraction -- 12.2.3 Phytostabilization -- 12.2.3.1 Advantages -- 12.2.3.2 Disadvantages -- 12.3 Conclusion -- References -- Chapter 13: Chromium Pollution and Bioremediation: An Overview -- 13.1 Introduction. , 13.2 General Description, Discovery, and Occurrence of Chromium.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    New York :Nova Science Publishers, Incorporated,
    Keywords: Soil microbiology. ; Phosphates -- Solubility. ; Crop improvement. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (473 pages)
    Edition: 1st ed.
    ISBN: 9781617285615
    Series Statement: Agriculture Issues and Policies Series
    DDC: 579/.1757
    Language: English
    Note: Intro -- PHOSPHATE SOLUBILIZING MICROBESFOR CROP IMPROVEMENT -- CONTENTS -- PREFACE -- ABOUT EDITORS -- CONTRIBUTORS -- BIOLOGICAL IMPORTANCE OF PHOSPHORUSAND PHOSPHATE SOLUBILIZINGMICROBES - AN OVERVIEW -- ABSTRACT -- 1.1. INTRODUCTION -- 1.2.1. Phosphorus Deficiency -- 1.3. PHOSPHORUS IN THE SOIL SYSTEM AND ITSAVAILABILITY TO PLANTS -- 1.4. EFFECTS OF COMPOST AND FERTILIZERON SOIL PHOSPHORUS -- 1.5. PLANT AVAILABLE PHOSPHORUS IN THE SOIL -- 1.6. BIOLOGICAL FACTORS AFFECTING AVAILABILITYOF PHOSPHORUS -- 1.7. AGRICULTURAL IMPORTANCE OF PHOSPHATESOLUBILIZING BACTERIA -- CONCLUSION -- REFERENCES -- NOVEL APPROACHES FOR ANALYSISOF BIODIVERSITYOF PHOSPHATE-SOLUBILIZING BACTERIA -- ABSTRACT -- 2.1. INTRODUCTION -- 2.2. MOLECULAR METHODS FOR ANALYSIS OF MICROORGANISMS:THE GENOMICS ERA -- 2.2.1. Gene Sequencing -- 2.2.2. Methods Based on DNA Polymorphisms -- 2.2.3. Low Molecular Weight RNA [LMW RNA] Profiles -- 2.2.4. Inmunofluorescence Methods: Fluorescent Labeling of Gene Products -- 2.2.5. Microarrays -- 2.3. CULTURE-INDEPENDENT MOLECULAR METHODS FOR ANALYSISOF MICROBIAL DIVERSITY: THE METAGENOMICS ERA -- 2.3.1. Fluorescence "In Situ" Hybridization [FISH] -- 2.3.2. Specific PCR Based Methods -- 2.3.3. Denaturing Gradient Gel Electrophoresis [DGGE] and TemperatureGradient Gel Electrophoresis [TGGE] -- 2.3.4. Single-Strand Conformation Polymorphisms -- 2.3.5. Ribosomal Intergenic Spacer Analysis and Automatized RibosomalIntergenic Spacer Analysis -- 2.3.6. Terminal Restriction Fragment Length Polymorphism -- 2.3.7. Amplified rDNA Restriction Analysis -- 2.3.8. Real-Time PCR -- 2.3.9. Complete Genomes and Future Perspectives -- CONCLUSION -- REFERENCES -- EFFECTS OF PHOSPHATE SOLUBILIZINGMICROORGANISM ON SOILPHOSPHORUS FRACTIONS -- ABSTRACT -- 3.1. SOIL P AVAILABILITY AND BEHAVIORFOR PLANT UPTAKE. , 3.2. INGREDIENT OF GROWTH MEDIA INFLUENCE SOILMICROBIAL ACTIVITY AND P SOLUBILITY -- 3.3. SOLUBILIZATION OF MINERAL PHOSPHATES -- 3.4. ORGANIC PHOSPHATE SOLUBILIZATION -- 3.5. PHOSPHORUS SOLUBILIZING BACTERIA AFFECTDIFFERENTIAL P FRACTION OF SOIL -- 3.5.1. Total Phosphorus -- 3.5.2. Labile P fractions -- 3.5.3. Moderately Labile P Fractions -- 3.5.4. Rresidual P Fraction -- CONCLUSION -- REFERENCES -- ROLE OF PLANT GROWTH PROMOTINGMICROORGANISMS FOR SUSTAINABLECROP PRODUCTION -- ABSTRACT -- 4.1. INTRODUCTION -- 4.2. PLANT GROWTH PROMOTING MICROORGANISMS -- 4.2.1. Bacteria -- 4.2.2. Fungi -- 4.2.3. Actinomycetes -- 4.3. MECHANISMS OF PLANT GROWTH PROMOTION -- 4.3.1. Direct Plant Growth Promotion -- 4.3.1.1. Nitrogen -- 4.3.1.2. Phosphorus -- 4.3.1.3. Potassium -- 4.3.1.4. Iron -- 4.3.1.5. Phytohormones and Enzymes -- 4.3.1.6. Volatiles in Plant Growth Promotion -- 4.3.2. Indirect Plant Growth Promotion Mechanisms [Biocontrol] -- 4.3.2.1. 2,4-Diacetyl Phloroglucinol -- 4.3.2.2. Pyoluteorin -- 4.3.2.3. Phenazine-1-carboxylic acid [PCA] -- 4.3.2.4. Pyrrolnitrin -- 4.3.2.5. Cyclic Lipopeptides -- 4.2.6. Volatile Metabolites -- 4.3.2.7. Siderophore Production -- 4.2.8. Production of Hydrolytic Enzymes -- 4.3.2.3. Elicitors and Induced Resistance -- 4.4. RHIZOSPHERE -- 4.4.1. Competitive Root Colonization -- 4.4.2. Factors Affecting Root Colonization -- 4.4.3. Perception on Communication in Rhizosphere: Quorum Sensing[Biofilms] -- 4.5. INTERACTIONS WITH OTHER MICROORGANISMS -- 4.6. MOLECULAR MECHANISM FOR TRAKING BACTERIAIN RHIZOSPHERE -- 4.6.1. Marker Based Detection Methods -- 4.6.2. Nucleic Acid-Based Detection Methods -- 4.7. COMMERCIALIZATION OF PGPM -- 4.7.1. Carrier Materials -- 4.7.2. Technology Transfer -- 4.7.3. Multiple Applications -- 4.8. METAGENOMIC APPROACH TO EXPLOIT NOVEL PGPM -- 4.9. SIGNIFICANCE OF PGPM IN SUSTAINABLE AGRICULTURE. , CONCLUSION AND FUTURE OUTLOOKS -- REFERENCES -- GENETIC AND FUNCTIONAL DIVERSITYOF PHOSPHATE SOLUBILIZING FLUORESCENTPSEUDOMONADS AND THEIR SIMULTANEOUSROLE IN PROMOTION OF PLANT GROWTHAND SOIL HEALTH -- ABSTRACT -- 5.1. INTRODUCTION -- 5.2. MICROBIAL PHOSPHATE SOLUBILIZATION -- 5.3. MICROBIAL MECHANISMS MEDIATING PHOSPHATESOLUBILIZATION -- 5.4. MICROBIAL DIVERSITY OF PHOSPHATE SOLUBILIZINGFLUORESCENT PSEUDOMONADS -- 5.4.1. Functional Diversity of Phosphate- Solubilizing FluorescentPseudomonads -- 5.4.1.1. Plant Growth Promoting Traits -- 5.4.1.1.1. Siderophore -- 5.4.1.1.2. Protease -- 5.4.1.1.3. Indole-3-Acetic Acid -- 5.4.1.1.4. 1-Aminocyclopropane-1-carboxylate [ACC] Deaminase -- 5.4.1.1.5. N-acyl homoserine Lactone [AHL] -- 5.4.1.2. Biocontrol Traits -- 5.4.1.2.1. Antagonism -- 5.4.1.2.2. Fungal Cell Wall Degrading Enzyme -- 5.4.1.2.3. Production of Enzymes for Decomposition of Crop Residues -- 5.4.1.2.3.1. Cellulase -- 5.4.1.2.3.2. Pectinase -- 5.4.1.2.4. Rapid Detection of Antibiotic Genes and Antimicrobial Metabolites -- 5.4.2. Phenotypic and Genotypic Diversity of Phosphate Solubilizing-Fluorescent Pseudomonads -- 5.5. GENES INVOLVED IN PHOSPHATE SOLUBILIZATION -- 5.6. MOLECULAR TOOLS USED FOR ISOLATION ANDCHARACTERIZATION OF PHOSPHATE SOLUBILIZING FLUORESCENTPSEUDOMONADS -- 5.6.1. Isolation and Screening of Phosphate-Solubilizing Strains -- 5.6.2. Estimation of Phosphate Solubilization -- 5.6.3. Evaluation of Strains for Efficient Phosphate Solubilization -- 5.6.4. Phenotypic Characterization -- 5.6.5. Molecular Characterization -- 5.6.5.1. 16S rRNA, gyrB and rpoD amplifications -- 5.6.5.2. Sequencing and Phylogenetic Tree Analyses -- 5.6.5.3. Amplified Ribosomal DNA Restriction Analysis [ARDRA] -- 5.6.5.4. Electrophoresis -- 5.6.5.5. Random Amplified Polymorphic DNA [RAPD] -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES. , PRACTICAL USE OF PHOSPHATE SOLUBILIZINGSOIL MICROORGANISMS -- ABSTRACT -- 6.1. INTRODUCTION -- 6.2. PHOSPHORUS IN SOIL -- 6.3. MINERAL PHOSPHORUS FERTILIZATIONThe conventional approach to improve phosphorus nutrition for optimum crop -- 6.4. PHOSPHORUS MOBILIZATION AND SOLUBILIZATION -- 6.4.1. MOBILITY OF PHOSPHORUS IN SOIL -- 6.4.2. Possibilities of Phosphorus Mobilization -- 6.4.3. Mechanisms of P-Solubilization -- 6.5. FACTORS AFFECTING MINERAL P-SOLUBILIZATION -- 6.6. PRACTICAL USE OF P-SOLUBILIZING SOIL MICROORGANISMS -- 6.6.1. P-Solubilizing Bacteria -- 6.6.2. P-Solubilizing Fungi -- 6.7. DETERMINATION OF P-SOLUBILIZING ACTIVITYOF MICROORGANISMS -- 6.7.1. P-Solubilizing Activity in Liquid Cultures -- 6.8. INOCULATION EFFECTS -- CONCLUSION AND FUTURE PROSPECT -- ACKNOWLEDGMENTS -- REFERENCES -- PHOSPHATE-SOLUBILIZATION BY PSYCHROPHILICAND PSYCHROTOLERANT MICROORGANISMS:AN ASSET FOR SUSTAINABLE AGRICULTUREAT LOW TEMPERATURES -- ABSTRACT -- 7.1. INTRODUCTION -- 7.2. PSYCHROPHILIC AND PSYCHROTOLERANT MICROORGANISMS -- 7.3. LIMITATION IN SUSTAINABLE AGRICULTUREAT LOW TEMPERATURE -- 7.4. PHOSPHORUS AND SOIL FERTILITY -- 7.5. PHOSPHATE-SOLUBILIZING ACTIVITIES AT LOWAND AMBIENT TEMPERATURES -- 7.6. PSMS FOR SUSTAINABLE AGRICULTUREAT LOW TEMPERATURES -- 7.7. FIRST REPORTED PSYCHROTOLERANT MUTANTSFOR HIGHER ALTITUDES -- 7.8. ECONOMY PERSPECTIVE OF BACTERIALPHOSPHATIC FERTILIZER -- 7.9. FUTURE PROSPECTS -- CONCLUSION -- REFERENCES -- BENEFICIAL MICROBES IN SUSTAINABLETROPICAL CROP PRODUCTION -- ABSTRACT -- 8.1. INTRODUCTION -- 8.2. BIOFERTILIZERS -- 8.2.1. Benefits of Plant-Rhizobacteria Associations -- 8.2.1.1. Symbiotic Association -- 8.2.1.2. Associative Plant-Rhizobacteria Association -- 8.2.1.3. Phosphate Solubilizing Bacteria -- 8.2.1.4. Potassium Solubilizing Bacteria -- 8.2.2. Plant-Fungi Associations -- 8.2.2.1. Mycorrhizal Fungi. , 8.2.2.1.1. Arbuscular Mycorrhizae -- 8.2.2.1.2. Ectomycorrhiza -- 8.2.2.2. Benefits of Mycorrhizal Fungi -- 8.2.2.2.1. Nutrient Uptake -- 8.2.2.2.2. Soil structure -- 8.2.2.2.3. Tolerance to Stress -- 8.2.2.2.4. Crop Protection -- 8.3. BIOENHANCER -- 8.3.1. Plant Growth Regulators -- 8.4. BIOFERTILIZER PRODUCTION AND APPLICATION -- 8.4.1. Bacterial Inoculum Production -- 8.4.1.1. Carrier Component -- 8.4.1.2. Inoculant Preparation and Packaging -- 8.4.2. Fungal Inoculum Production -- 8.4.2.1. Soil-Based Inoculum -- 8.4.2.2. Soil-Free Inocula -- 8.4.2.3. Inoculum Application -- 8.4.3. Biofertilizer Application -- 8.4.3.1. Mycorrhiza -- 8.4.3.2.1. Fertilization -- 8.4.3.2.2. Management of AM Fungi -- 8.4.3.3. Synergy between Beneficial Microorganisms -- CONCLUSION -- ACKNOWLEDGMENT -- REFERENCES -- MOLECULAR GENETICS OF PHOSPHATESOLUBILIZATION IN RHIZOSPHERE BACTERIAAND ITS ROLE IN PLANT GROWTH PROMOTION -- ABSTRACT -- 9.1. INTRODUCTION -- 9.2. PHOSPHORUS AVAILABILITY IN SOILS -- 9.3. MICROORGANISMS INVOLVED IN SOLUBILIZATIONOF INORGANIC PHOSPHORUS -- 9.4. GENETICS OF PHOSPHATE SOLUBILIZATION -- 9.5. MECHANISM OF INORGANIC PHOSPHATE SOLUBILIZATION -- 9.5.1 Production of Organic Acids -- 9.4. GENETICS OF PHOSPHATE SOLUBILIZATION -- 9.5. MECHANISM OF INORGANIC PHOSPHATE SOLUBILIZATION -- 9.5.1 Production of Organic Acids -- 9.5.2. Production of Inorganic Acids -- 9.5.3. Other Mechanisms of Phosphate Solubilization -- 9.6. ORGANIC PHOSPHATE SOLUBILIZATION -- 9.6.1. Nonspecific Acid Phosphatases -- 9.6.2. Phytases -- 9.7. ISOLATION OF MINERAL PHOSPHATE SOLUBILIZING[MPS] GENES -- 9.7.1. Manipulation of MPS Genes for PGPR Improvement -- 9.8. AGRONOMIC SIGNIFICANCE OF MINERAL PHOSPHATESOLUBILIZING BACTERIA -- 9.8.1. Interactions of P-Solubilizing Bacteria with Other Beneficial Microbes -- CONCLUSION -- REFERENCES. , STRATEGIES FOR DEVELOPMENT OF MICROPHOSAND MECHANISMS OF PHOSPHATE-SOLUBILIZATION.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Vienna :Springer Wien,
    Keywords: Legumes -- Breeding. ; Electronic books.
    Description / Table of Contents: This volume covers concepts of microbial technology for the improvement of legumes grown in different agro-ecosystems. It gives a broad view of legume disease management using microbes and offers strategies for the management of cultivated legumes.
    Type of Medium: Online Resource
    Pages: 1 online resource (544 pages)
    Edition: 1st ed.
    ISBN: 9783211997536
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...