GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2017-11-13
    Description: Antarctic pack ice is inhabited by a diverse and active microbial community reliant on nutrients for growth. Seeking patterns and overlooked processes, we performed a large-scale compilation of macro-nutrient data (hereafter termed nutrients) in Antarctic pack ice (306 ice-cores collected from 19 research cruises). Dissolved inorganic nitrogen and silicic acid concentrations change with time, as expected from a seasonally productive ecosystem. In winter, salinity-normalized nitrate and silicic acid concentrations (C*) in sea ice are close to seawater concentrations (Cw), indicating little or no biological activity. In spring, nitrate and silicic acid concentrations become partially depleted with respect to seawater (C* 〈 Cw), commensurate with the seasonal build-up of ice microalgae promoted by increased insolation. Stronger and earlier nitrate than silicic acid consumption suggests that a significant fraction of the primary productivity in sea ice is sustained by flagellates. By both consuming and producing ammonium and nitrite, the microbial community maintains these nutrients at relatively low concentrations in spring. With the decrease in insolation beginning in late summer, dissolved inorganic nitrogen and silicic acid concentrations increase, indicating imbalance between their production (increasing or unchanged) and consumption (decreasing) in sea ice. Unlike the depleted concentrations of both nitrate and silicic acid from spring to summer, phosphate accumulates in sea ice (C* 〉 Cw). The phosphate excess could be explained by a greater allocation to phosphorus-rich biomolecules during ice algal blooms coupled with convective loss of excess dissolved nitrogen, preferential remineralization of phosphorus, and/or phosphate adsorption onto metal-organic complexes. Ammonium also appears to be efficiently adsorbed onto organic matter, with likely consequences to nitrogen mobility and availability. This dataset supports the view that the sea ice microbial community is highly efficient at processing nutrients but with a dynamic quite different from that in oceanic surface waters calling for focused future investigations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: A large-scale geographical study of the ice pack in the seasonal ice zone of the Weddell Sea, Antarctica, took place from September to October 2006. Sea ice brines with a salinity greater than 58 and temperature lower than -3.6oC were sampled from 22 ice stations. The brines had large deficits in total alkalinity and in the concentrations of the major dissolved macronutrients (total dissolved inorganic carbon, nitrate, and soluble reactive phosphorus) relative to their concentrations in the surface oceanic water and conservative behaviour during seawater freezing. The concentration deficits were related to the dissolved inorganic carbon-consuming processes of photosynthesis, CaCO3 precipitation, and CO2 degassing. The largest concentration deficits in total dissolved inorganic carbon were found to be associated with CaCO3 precipitation and CO2 degassing, because the magnitude of the photosynthesis-induced concentration deficit in total dissolved inorganic carbon is controlled by the size of the inorganic nutrient pool, which can be limited in sea ice by its openness to exchange with the surrounding oceanic water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...