GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
  • 1
    Publication Date: 2021-03-30
    Description: Even modest ash-rich volcanic eruptions can severely impact a range of human activities, especially air travel. The dispersal of ash in these eruptions depends critically on aggregation and sedimentation processes - however these are difficult to quantify in volcanic plumes. Here, we image ash dynamics from mild explosive activity at Santiaguito Volcano, Guatemala, by measuring the depolarisation of scattered sunlight by non-spherical ash particles, allowing the dynamics of diffuse ash plumes to be investigated with high temporal resolution (〉1 Hz). We measure the ash settling velocity downwind from the main plume, and compare it directly with ground sampled ash particles, finding good agreement with a sedimentation model based on particle size. Our new, cost-effective technique leverages existing technology, opening a new frontier of integrated ash visualisation and ground collection studies which could test models of ash coagulation and sedimentation, leading to improved ash dispersion forecasts. This will provide risk managers with improved data quality on ash location, reducing the economic and societal impacts of future ash-rich eruptions.
    Description: Published
    Description: 15680
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-13
    Description: The newly launched imaging spectrometer TROPOMI onboard the Sentinel-5 Precursor satellite provides atmospheric column measurements of sulfur dioxide (SO2) and other gases with a pixel resolution of 3.5 × 7 km2. This permits mapping emission plumes from a vast number of natural and anthropogenic emitters with unprecedented sensitivity, revealing sources which were previously undetectable from space. Novel analysis using back-trajectory modelling of satellite-based SO2 columns allows calculation of SO2 flux time series, which would be of great utility and scientific interest if applied globally. Volcanic SO2 emission time series reflect magma dynamics and are used for risk assessment and calculation of the global volcanic CO2 gas flux. TROPOMI data make this flux time series reconstruction approach possible with unprecedented spatiotemporal resolution, but these new data must be tested and validated against ground-based observations. Mt. Etna (Italy) emits SO2 with fluxes ranging typically between 500 and 5000 t/day, measured automatically by the largest network of scanning UV spectrometers in the world, providing the ideal test-bed for this validation. A comparison of three SO2 flux datasets, TROPOMI (one month), ground-network (one month), and ground-traverse (two days) shows acceptable to excellent agreement for most days. The result demonstrates that reliable, nearly real-time, high temporal resolution SO2 flux time series from TROPOMI measurements are possible for Etna and, by extension, other volcanic and anthropogenic sources globally. This suggests that global automated real-time measurements of large numbers of degassing volcanoes world-wide are now possible, revolutionizing the quantity and quality of magmatic degassing data available and insights into volcanic processes to the volcanological community.
    Description: Published
    Description: id 957
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-19
    Description: High precision and accuracy in volcanic SO2 emission rate quantification is critical for eruption forecasting and, in combination with in-plume gas ratios, quantifying global volcanic emission inventories. Light dilution, where scattering of ultraviolet light dilutes plume SO2 absorbance signals, has been recognized for more than 50 years, but is still not routinely corrected for during gas flux quantification. Here we use modeling and empirical observations from Masaya volcano, Nicaragua, to show that light dilution produces: i) underestimates in SO2 that can reach a factor of 5 and, at low column densities, cause little impact on standard retrieval fit quality, even for heavily diluted spectra; ii) retrieved SO2 amounts that are capped by a maximum value regardless of the true amount of SO2, with this maximum amount being reduced as light dilution increases. Global volcanic volatile emission rates may therefore be significantly underestimated. An easily implementable dual-waveband analysis provides a means to detect, and in clear sky conditions, correct dilution effects directly from the spectra, opening a path to more accurate SO2 quantifications.
    Description: Published
    Description: 528753
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-05-17
    Description: The Kuril Island arc extending for about 1,200 km from Kamchatka Peninsula to Hokkaido Island is a typical active subduction zone with 40 historically active subaerial volcanoes, some of which are persistently degassing. Seven Kurilian volcanoes (Ebeko, Sinarka, Kuntomintar, Chirinkotan, Pallas, Berg, and Kudryavy) on six islands (Paramushir, Shiashkotan, Chirinkotan, Ketoy, Urup, and Iturup) emit into the atmosphere〉90% of the total fumarolic gas of the arc. During the field campaigns in 2015–2017 direct sampling of fumaroles, MultiGas measurements of the fumarolic plumes and DOAS remote determinations of the SO2 flux were conducted on these volcanoes. Maximal temperatures of the fumaroles in 2015–2016 were 5108C (Ebeko), 4408C (Sinarka), 2608C (Kuntomintar), 7208C (Pallas), and 8208C (Kudryavy). The total SO2 flux (in metric tons per day) from fumarolic fields of the studied volcanoes was measured as 1,8006300 t/d, and the CO2 flux is estimated as 1,2506400 t/d. Geochemical characteristics of the sampled gases include dD and d18O of fumarolic condensates, d13C of CO2, d34S of the total sulfur, ratios 3He/4He and 40Ar/36Ar, concentrations of the major gas species, and trace elements in the volcanic gas condensates. The mole ratios C/S are generally 〈1. All volcanoes of the arc, except the southernmost Mendeleev and Golovnin volcanoes on Kunashir Island, emit gases with 3He/4He values of 〉7RA (where RA is the atmospheric 3He/4He). The highest 3He/4He ratios of 8.3RA were measured in fumaroles of the Pallas volcano (Ketoy Island) in the middle of the arc.
    Description: Published
    Description: 1859-1880
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-02
    Description: SO2 cameras are able to measure rapid changes in volcanic emission rate but require accurate calibrations and corrections to convert optical depth images into slant column densities. We conducted a test at Masaya volcano of two SO2 camera calibration approaches, calibration cells and co-located spectrometer, and corrected both calibrations for light dilution, a process caused by light scattering between the plume and camera. We demonstrate an advancement on the image-based correction that allows the retrieval of the scattering efficiency across a 2D area of an SO2 camera image. When appropriately corrected for the dilution, we show that our two calibration approaches produce final calculated emission rates that agree with simultaneously measured traverse flux data and each other but highlight that the observed distribution of gas within the image is different. We demonstrate that traverses and SO2 camera techniques, when used together, generate better plume speed estimates for traverses and improved knowledge of wind direction for the camera, producing more reliable emission rates. We suggest combining traverses and the SO2 camera should be adopted where possible.
    Description: Published
    Description: 935
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: SO2 camera
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-11-21
    Description: Accurate quantification of the emission rate of sulphur dioxide (SO 2 ) from volcanoes provides both insights into magmatic processes and a powerful monitoring tool for hazard mitigation. The primary method for measuring magmatic SO 2 is Differential Optical Absorption Spectroscopy (DOAS) of UV scattered sunlight spectra, in which a reference spectrum taken outside the plume is used to quantify the SO2 slant column density inside the plume. This can lead to problems if the reference spectrum is contaminated with SO2 as this will result in a systematic underestimation of the retrieved SO2 slant column density, and therefore emission rate. We present a new analysis method, named ―iFit‖, which retrieves the SO 2 slant column density from UV spectra by directly fitting the measured intensity spectrum at high spectral resolution (0.01 nm) using a literature solar reference spectrum and measured instrument characteristics. This eliminates the requirement for a measured reference spectrum, providing a ―point and shoot‖ method for quantifying SO 2 slant column densities. We show that iFit retrieves correct SO2 slant column densities in a series of test cases, finding agreement with existing methods. We propose that iFit is suitable for both traverse measurements and permanent scanning stations, and could be integrated into volcano monitoring networks at observatories. Finally, we provide an open source software implementation of iFit with a user friendly graphical interface to allow users to easily utilise iFit.
    Description: Published
    Description: 107000
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...