GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2024-04-27
    Description: The objective of this study was to assess experimentally the potential impact of anthropogenic pH perturbation (ApHP) on concentrations of dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP), as well as processes governing the microbial cycling of sulfur compounds. A summer planktonic community from surface waters of the Lower St. Lawrence Estuary was monitored in microcosms over 12 days under three pCO2 targets: 1 * pCO2 (775 µatm), 2 * pCO2 (1,850 µatm), and 3 * pCO2 (2,700 µatm). A mixed phytoplankton bloom comprised of diatoms and unidentified flagellates developed over the course of the experiment. The magnitude and timing of biomass buildup, measured by chlorophyll a concentration, changed in the 3 * pCO2 treatment, reaching about half the peak chlorophyll a concentration measured in the 1 * pCO2 treatment, with a 2-day lag. Doubling and tripling the pCO2 resulted in a 15% and 40% decline in average concentrations of DMS compared to the control. Results from 35S-DMSPd uptake assays indicated that neither concentrations nor microbial scavenging efficiency of dissolved DMSP was affected by increased pCO2. However, our results show a reduction of the mean microbial yield of DMS by 34% and 61% in the 2 * pCO2 and 3 * pCO2 treatments, respectively. DMS concentrations correlated positively with microbial yields of DMS (Spearman's ρ = 0.65; P 〈 0.001), suggesting that the impact of ApHP on concentrations of DMS in diatom-dominated systems may be strongly linked with alterations of the microbial breakdown of dissolved DMSP. Findings from this study provide further empirical evidence of the sensitivity of the microbial DMSP switch under ApHP. Because even small modifications in microbial regulatory mechanisms of DMSP can elicit changes in atmospheric chemistry via dampened efflux of DMS, results from this study may contribute to a better comprehension of Earth's future climate.
    Keywords: Alkalinity, total; Aragonite saturation state; Bacteria, cells; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Brackish waters; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cells, other; Chlorophyll a; Choanoflagellates; Chrysophyceae; Community composition and diversity; Cryptophyceae; DATE/TIME; Diatoms; Dimethyl sulfide; Dimethyl sulfide, yield; Dimethylsulfoniopropionate, dissolved; Dimethylsulfoniopropionate, total; Dimethylsulfoniopropionate rate; Dinoflagellates; Duration, number of days; Entire community; Flagellates indeterminata; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; MULT; Multiple investigations; Nitrate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Potentiometric titration; Prasinophyceae; Primary production/Photosynthesis; Primary production of carbon, dissolved; Primary production of carbon, particulate; Primary production of carbon, total; Prymnesiophyceae; Quebec, Canada; Replicate; Salinity; Silicate; Spectrophotometric; StLawrence_Estuary; Sulfur, 35S; Temperate; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 2577 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...