GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the “Istanbul seismic gap”) has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic-driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5–5 km depth range, from where pressurized gas is expected to migrate along the MMF, up to the surface sediment layers. Hence, gas-related processes should also be considered for a complete interpretation of the micro-seismicity (~M 〈 3) within the Istanbul offshore domain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-12
    Description: We provide a complete description of the characteristics of excitation and attenuation of the ground motion in the Lake Van region (eastern Turkey) using a data set that includes three-component seismograms from the 23 October 2011 M w  7.1 Van earthquake, as well as its aftershocks. Regional attenuation and source scaling are parameterized to describe the observed ground motions as a function of distance, frequency, and magnitude. Peak ground velocities are measured in selected narrow frequency bands from 0.25 to 12.5 Hz; observed peaks are regressed to define a piecewise linear regional attenuation function, a set of excitation terms, and a set of site response terms. Results are modeled through random vibration theory (see Cartwright and Longuet-Higgins, 1956 ). In the log–log space, the regional crustal attenuation is modeled with a bilinear geometrical spreading characterized by a crossover distance at 40 km: fits our results at short distances ( r 〈40 km), whereas is better at larger distances (40〈 r 〈200 km). A frequency-dependent quality factor, Q ( f )=100( f / f ref ) 0.43 (in which f ref =1.0 Hz), is coupled to the geometrical spreading. Because of the inherent trade-off of the excitation/attenuation parameters ( and ), their specific values strongly depend on the choice made for the stress drop of the smaller earthquakes. After choosing a Brune stress drop Brune =4 MPa at M w =3.5, we were able to define (1) an effective high frequency, distance- and magnitude-independent roll-off spectral parameter, eff =0.03 s and (2) a size-dependent stress-drop parameter, which increases with moment magnitude, from Brune =4 MPa at M w  3.5 to Brune =20 MPa at M w  7.1. The set of parameters mentioned here may be used in order to predict the earthquake-induced ground motions expected from future earthquakes in the region surrounding Lake Van.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-08
    Description: Reliable moment magnitude estimates for seismic events in the Middle East region can be difficult to obtain due to the uneven distribution of stations, the complex tectonic structure, and regions of high attenuation. In this study, we take advantage of the many new broadband seismic stations that have become available through improved national networks and numerous temporary deployments. We make coda envelope-amplitude measurements for 2247 events recorded by 68 stations over 13 narrow frequency bands ranging between 0.03 and 8 Hz. The absolute scaling of these spectra was calculated based on independent waveform modeling solutions of the moment magnitudes for a subset of these events to avoid circularity. Using our 1D path calibrations, we determined coda-based magnitudes for a majority of the events. We obtain fairly good agreement with waveform-modeled seismic moments for the larger events ( M w 〉4.5) at low frequencies (〈0.7 Hz). As expected, the coda-derived source spectra become increasingly scattered at higher frequencies (〉0.7 Hz) because of unaccounted 2D path effects, as well as mixing of both Sn coda and Lg coda, which have different attenuation behavior. This scatter leads to increased variance in the magnitudes estimated for smaller events in which low-frequency amplitudes are below the noise levels and the higher frequencies are the only signals available. We quantify the expected variance in coda envelope amplitudes as a function of frequency using interstation scatter as our metric. The net results of this study provide thousands of new 1D coda magnitude estimates for events in the broad region, as well as the necessary initial starting model for use in a new related 2D coda study ( Pasyanos et al. , 2016 ). Online Material: Table of site terms and moment magnitudes.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-25
    Description: We provide a complete description of the characteristics of excitation and attenuation of the ground motion in the Lake Van region (eastern Turkey) using a data set that includes three-component seismograms from the 23 October 2011 Mw 7.1 Van earthquake, as well as its aftershocks. Regional attenuation and source scaling are parameterized to describe the observed ground motions as a function of distance, frequency, and magnitude. Peak ground velocities are measured in selected narrow frequency bands from 0.25 to 12.5 Hz; observed peaks are regressed to define a piecewise linear regional attenu- ation function, a set of excitation terms, and a set of site response terms. Results are modeled through random vibration theory (see Cartwright and Longuet-Higgins, 1956). In the log–log space, the regional crustal attenuation is modeled with a bilinear geo- metrical spreading g r characterized by a crossover distance at 40 km: g r ∝ r^−1 fits our results at short distances (r 〈 40 km), whereas g r ∝ r^−0.3 is better at larger distances (40 〈 r 〈 200 km). A frequency-dependent quality factor, Q f =100( f/fref)^ 0:43 (in which fref 1.0 Hz), is coupled to the geometrical spreading. Because of the inherent trade-off of the excitation/attenuation parameters (Δσ and κ), their specific values strongly depend on the choice made for the stress drop of the smaller earthquakes. After choosing a Brune stress drop ΔσBrune 4 MPa at Mw 3:5, we were able to define (1) an effective high frequency, distance- and mag- nitude-independent roll-off spectral parameter, κeff = 0:03 s and (2) a size-dependent stress-drop parameter, which increases with moment magnitude, from ΔσBrune 4 MPa at Mw 3.5 to ΔσBrune 20 MPa at Mw 7.1. The set of parameters mentioned here may be used in order to predict the earthquake-induced ground motions expected from future earthquakes in the region surrounding Lake Van.
    Description: Published
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: open
    Keywords: Earthquake-induced ground motion, Lake Van, Crustal attenuation ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-25
    Description: Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the “Istanbul seismic gap”) has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic-driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5–5 km depth range, from where pressurized gas is expected to migrate along the MMF, up to the surface sediment layers. Hence, gas-related processes should also be considered for a complete interpretation of the micro-seismicity (~M 〈 3) within the Istanbul offshore domain.
    Description: Published
    Description: id 6819
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Description: A unique and very interesting earthquake of magnitude Mw 7.2 occurred in the Van region of Turkey on October 23, 2011 that caused a heavy loss of human lives and properties. The earthquake occurred on a blind oblique thrust fault oriented towards the NE–SW direction and dipping towards NW as evidenced by focal mechanism solution and aftershock distribution. In this study, we analyzed the seismogenesis and earthquake triggering during this sequence with the help of estimated seismological parameters (b-value of frequency–magnitude relation, p-value of aftershocks temporal decay and D-value of fractal dimension), 2D mapping of b- and p-values, 3D mapping of b-value and coseismic Coulomb stress modeling. The estimated seismic b-value equal to 0.89 reveals that the mainshock occurred in a highly stressed region and sequence comprised larger magnitude aftershocks due to the presence of large size asperities within the rupture zone. The normal estimate of p-value (0.98) suggests a tectonic genesis of the aftershocks sequence. The estimated D-value equal to 1.80 reveals that rupture propagated in a two-dimensional plane filled up by fractures. The spatial 2D and 3D mapping of seismic b-value suggests that the Van earthquake originated in a highly heterogeneous fractured rock matrix with fluid intrusions into it at deeper depth beneath the mainshock hypocenter region. The estimated coseismic Coulomb stress using the variable slip model for depth range 0–30 km exhibits a ‘butterfly’ pattern and most of the aftershocks fall (90%) in the region of enhanced Coulomb stress. This suggests that most of the aftershock activities have been triggered by transfer of positive Coulomb stress due to coseismic slip of the mainshock. The results estimated in the present study have potential useful implications in future seismic hazard assessment and risk mitigation in Van and the surrounding regions.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Description: We determined the centroid moment tensor (CMT) solutions of earthquakes that occurred along the North Anatolian fault (NAF) beneath the Sea of Marmara and the Aegean Sea, using data obtained from Turkey’s broad-band seismograph network. The CMT solution of the 2014 Aegean Sea earthquake (Mw 6.9) represents a strike-slip fault, consistent with the geometry of the NAF, and the source-time function indicates that this event comprised several distinct subevents. Each subevent is considered to have ruptured a different fault segment. This observation indicates the existence of a mechanical barrier, namely a NAF segment boundary, at the hypocenter. CMT solutions of background seismicity beneath the Aegean Sea represent strike-slip or normal faulting along the NAF or its branch faults. The tensional axes of these events are oriented northeast–southwest, indicating a transtensional tectonic regime. Beneath the Sea of Marmara, the CMT solutions represent mostly strike-slip faulting, consistent with the motion of the NAF, but we identified a normal fault event with a tensional axis parallel to the strike of the NAF. This mechanism indicates that a pull-apart basin, marking a segment boundary of the NAF, is developing there. Because ruptures of a fault system and large earthquake magnitudes are strongly controlled by the fault system geometry and fault length, mapping fault segments along NAF can help to improve the accuracy of scenarios developed for future disastrous earthquakes in the Marmara region.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Description: The 8–28 December 2013 Mw 5.0–5.8 Antalya Basin earthquake sequence in eastern Mediterranean is examined. Centroid moment tensors for 16 earthquakes with moment magnitudes (Mw) between 3.6 and 5.8 are determined by applying a waveform inversion method. All earthquakes are shallow focus thrust events at a depth of 40–45 km. The seismic moments (Mo) of the earthquakes are estimated as 4.10 × 1016–5.54 × 1017 N m and rupture durations of the mainshocks are 20–22 s. The focal mechanisms of the aftershocks are mainly thrust faulting with a strike-slip component and reveal NW–SE trending direction of T-axis in the entire activated region. According to high-resolution hypocenter relocation of the Antalya earthquake sequence, seven main clusters are revealed. The aftershock activity in the observation period between 1 December 2013 and 23 January 2015 extends in an N to S direction. A seismic cross-section indicates that a complex pattern of the hypocenter distribution with the activation of seven segments. The westernmost cluster (cluster 1) is associated with a fault plane trending mainly WNW–ESE and dipping vertical, while the cluster 5 is related to a fault plane trending NNE–SSW and dipping towards SSE. The best constrained focal depths indicate that the aftershock sequence is mainly confined in the crust (depth 〈 40 km) and are operating in the approximate depth range from 3 to 110 km. A stress tensor inversion of focal mechanism data is performed to obtain a more precise picture of the Antalya Basin stress field. The stress tensor inversion results indicate a predominant thrust stress regime with a NE–SW oriented maximum horizontal compressive stress (SH). According to variance of the stress tensor inversion, to first order, the Antalya Basin is characterized by a homogeneous interplate stress field. The Coulomb stress change associated with two mainshocks are also investigated to evaluate any significant enhancement of stresses along the Antalya Basin and surrounding regions. Positive lobes with stress of more than 0.4 bars are obtained for two mainshocks, indicating that these values are large enough to increase the Coulomb stress failure towards NE–SW and NW–SE directions, respectively.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: Tsunami mitigation, preparedness and early warning initiatives have begun at the global scale only after the tragic event of Sumatra in 2004. Turkey, as a country with a history of devastating earthquakes, has been also affected by tsunamis in its past. In this paper we present the Tsunami Hazard in the Eastern Mediterranean and its connected seas (Aegean, Marmara and Black Sea) by providing detailed information on historically and instrumentally recorded significant tsunamigenic events surrounding Turkey, aiming to a better understanding of the Tsunami threat to the Turkish coasts. In addition to the review of the Tsunami hazard, we have studied a possible Tsunami source area between Rhodes and SW of Turkey using Tsunami numerical model NAMI DANCE-two nested domains. We have computed a maximum positive amplitude of 1.13 m and maximum negative amplitude of −0.5 m at the Tsunami source by this study. The distribution of maximum positive amplitudes of the water surface elevations in the selected Tsunami forecast area and time histories of water level fluctuations near selected locations (Marmaris, Dalaman, Fethiye and Kas towns) indicate that the maximum positive amplitude near the coast in the selected forecast area exceeds 3.5 m. The arrival time of maximum wave to Marmaris, Dalaman, is 10 min, while that of Fethiye and Kas towns is 15–20 min. The maximum positive amplitudes near the shallow region of around 10 m depth are 3 m (Marmaris), 1 m (Dalaman), 2 m (Fethiye) and 1 m (Kas). Maximum positive amplitudes of water elevations in the duration of 4 h simulation of the Santorini-Minoan Tsunami in around 1600 BC in the Aegean Sea are also calculated based on a simulation performed using 900 m grid resolution of Aegean sea bathymetry with a 300 m collapse of 10 km diameter of Thera (Santorini) caldera. We have also presented the results of the Tsunami modeling and simulation for Marmara Sea obtained from a previous study. Last part of this paper provides information on the establishment of a Tsunami Warning Center by KOERI, which is expected to act also as a regional center under the UNESCO Intergovernmental Oceanographic Commission – Intergovernmental Coordination Group for the Tsunami Early Warning and Mitigation System in the North-Eastern Atlantic, the Mediterranean and Connected Seas (ICG/NEAMTWS) initiative, emphasizing on the challenges together with the future work needed to be accomplished.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...