GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Scandinavian journal of immunology 41 (1995), S. 0 
    ISSN: 1365-3083
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The epitope repertoire of B cells, due to their selective ability to process their specific antigen and the potential bias imposed on the resulting peptides by the surface immunoglobulins bound to the antigen, may influence the T-helper repertoire.Immunization of C57B1/6 mice with Torpedo acetylcholine receptor (TAChR) causes experimental autoimmune myasthenia gravis (EAMG). Anti-TAChR CD4+ cells recognize epitopes within three sequence regions of the TAChR a subunit (“dominant epitopes’). Immunization of mice with denatured or synthetic TAChR antigens sensitizes CD4+ cells to other TAChR sequence regions (‘cryptic epitopes’).We investigated here whether clustering of B and T epitopes within the same short sequence segments occurs during the anti-TAChR response, as previously described for the response to hexogenous antigens unrelated to homologous self proteins.Twelve 19–20 residue synthetic sequences of the TAChRα, β and δ subunits, containing dominant or cryptic CD4+ epitopes for C57B1/6 mice, were tested for ability to induce anti-peptide antibody production. C57B1/6 mice were immunized with the individual peptides. Ten peptides stimulated antibody production. Therefore 〉80% of these short TAChR sequences also contain B epitopes.Therefore also in the anti-TAChR response leading to EAMG T and B cell epitopes frequently reside within the same short sequence segment.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3083
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The I-Abm12 mutation in C57B1/6 (B6) mice yields the B6. C-H-2bm12 (bm12) strain, which is resistant to Experimental Myasthenia Gravis (EMG) induced by immunization with Torpedo acetylcholine receptor (TAChR), while the parental B6 strain is highly susceptible to EMG. CD4+ cells from bm12 mice immunized with TAChR do not recognize three sequence regions of the TAChR Q subunit which dominate the CD4+ cell sensitization in B6 mice. We immunized with TAChR bm12, B6 and (bm12B6)Fl mice. B6 and F1 mice developed EMG with comparable frequency. Their CD4+ cells recognized the same TAChR α subunit peptide sequences (Tα150–169, Tα181–200 and Tα360–378). CD4+ cells from TAChR-sensitized Fl mice were challenged with TAChR and α subunit epitope peptides, using F1, B6 or bml 2 APC. B6 and F1 APC presented all these Ag efficiently, while bm 12 APC presented TAChR and peptide Tα150–169 poorly and erratically. Anti-TAChR and anti-α subunit epitope CD4+ lines propagated from Fl and B6 mice had similar TcR Vβ usage. All lines but those specific for the sequence Tα150–169 had unrestricted Vβ usage. Anti-Tα150–169 lines from both B6 and Fl mice had a strong preferential usage of Vβ6. Anti-Tα150–169 lines from Fl mice had also a slightly higher Vβ14 usage. B6, bm12 and Fl mice developed similar anti-TAChR Ab titres, and had Ab bound to muscle AChR in comparable amounts. Therefore EMG resistance of bm12 mice must be due to a subtle shift in the anti-AChR Ab repertoire, and absence of special Ab able to cause destruction and/or dysfunction of muscle AChR. This is probably related to the absence of CD4+ cells sensitized to epitopes within the sequence Tα 150–160, consequent to the inability of the I-Abm12 molecule to present this sequence.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...