GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Using immunocytochemical localization, the distribution of the glycine transporters GLYT1 and GLYT2 in the developing mouse brain was studied. GLYT1 and GLYT2 immunoreactivity begins during the period of fiber outgrow and synaptogenesis. GLYT2 is first expressed in spinal and spinothalamic white matter and is followed by the expression of synaptophysin. In the postnatal stages, GLYT2 staining in the white matter disappears, and a punctuated pattern in the gray matter emerges. In contrast, in the fetal brain GLYT1 immunoreactivity coincides with gray matter neuropil and processes of radial glia. GLYT1 is distributed over a much wider area of the brain than GLYT2. However, the distribution of these two GLYTs implies that GLYT1 and GLYT2 operate in concert within the area where both are present. At the day 12 embryo stage, GLYT1 antibodies stain the liver, and later they also react with the pancreas and the gastroduodenal junction. No other organs exhibit significant GLYT1 immunoreactivity. We additionally observed the presence of GLYT1 in rat fetal cerebral cortex and hippocampus, which was not detected in fetal mouse brain. Moreover, GLYT1 immunoreactivity was found in the mouse floor plate and the ventral commissure but was not present in the same regions in rats. These findings suggest possible differences in the expression of GLYT1 between these two species.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: cDNA clones representing four pharmacologically distinct GABA transporters (GAT1–GAT4) were previously identified in mouse brain. Two of these, GAT1 and GAT4, were found to be brain specific. We studied GAT1 and GAT4 in the developing rat brain using polyclonal antibodies against recombinant fusion proteins. Patterns of immunoreactivity were very similar in the embryonic and early postnatal stages for both transporters. However, whereas GAT1 immunoreactivity was detected in distinct patterns in gray matter and growing axons, GAT4 immunoreactivity was found in a subset of radial glial cell fascicles. These patterns usually oriented perpendicularly to the axons expressing GAT1. Our results suggest a transient relationship between GAT4-expressing radial glial elements and GAT1-expressing axons. The presence of GAT1 in the cortical marginal zone and the numerous GAT4-positive fascicles observed in the fetal anterior commissure indicate that both transporters may play a role in processes of brain maturation. Because the beginning of expression for both GAT1 and GAT4 correlates with the expression of the α1 subunit of the GABA receptor, the transporters may be connected with the maturation of adult-type GABAergic inhibitory system in the brain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 64 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We studied by immunocytochemical localization, the glycine neurotransmitter transporter (GLYT2) in mouse brain, using polyclonal antibodies raised against recombinant N-terminus and loop fusion proteins. Western analysis and immunocytochemistry of mouse brain frozen sections revealed caudal-rostral gradient of GLYT2 distribution with massive accumulation in the spinal cord, brainstem, and less in the cerebellum. Immunoreactivity was detected in processes with varicosities but not cell bodies. A correlation was observed between the pattern we obtained and previously reported strychnine binding studies. The results indicate that GLYT2 is involved in the termination of glycine neurotransmission accompanying the glycine receptor at the classic inhibitory system in the hindbrain.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 88 (2004), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The glycine transporter 2 (GlyT2) belongs to the family of Na+/CL–-dependent plasma membrane transporters and is localized on the presynaptic terminals of glycinergic neurons. GlyT2 differs from other family members by its extended N-terminal cytoplasmic region. We report that activation of a Ca2+-dependent protease, most likely calpain, in spinal cord synaptosomes or cultured spinal cord neurons, results in partial proteolysis of GlyT2. Regions sensitive to calpain cleavage in vivo are located in the N-terminal and, to a lesser extent, C-terminal regions of the transporter protein. Incubation of a GlyT2 N-terminal fusion protein with spinal cord extract in the presence of calcium followed by protein sequence analysis localized the major N-terminal cleavage site after methionine 156, with a second cleavage site being situated after glycine 164. Interestingly, the size of the N-terminally truncated GlyT2 protein (70 kDa) is similar to that of most other transporter family members, and truncated GlyT2 displayed full transport activity upon expression in HEK293 cells. Our data suggest that Ca2+-triggered proteolysis may contribute to the regulation of GlyT2 trafficking and/or function in the neuronal plasma membrane.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...