GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Bioorganic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (464 pages)
    Edition: 1st ed.
    ISBN: 9783527607112
    DDC: 547.05
    Language: English
    Note: Intro -- Bioorganometallics -- Preface -- Contents -- List of Contributors -- 1 A Novel Field of Research: Bioorganometallic Chemistry, Origins, and Founding Principles -- 1.1 Introduction -- 1.2 Organometallics and Therapy -- 1.2.1 The Founding Father -- 1.2.2 The First Significant Organometallic Drug -- 1.2.3 Arsenic Compounds after Ehrlich -- 1.2.4 Organometallic Mercury Compounds -- 1.2.5 The Current Re-evaluation: Considerations of Efficacy, Toxicity and Selectivity -- 1.3 Toxicology and the Environment -- 1.4 Bioanalytical Methods Based on Special Properties of Organometallic Complexes -- 1.5 Naturally-occurring Organometallics and Synthetic Models -- 1.6 Organometallic Chemistry and Aqueous Solvents -- 1.7 Conclusions -- References -- 2 Ruthenium Arene Anticancer Complexes -- 2.1 Introduction -- 2.2 Metal-based Anticancer Complexes -- 2.3 Chemistry of Ru Arenes -- 2.3.1 Synthesis -- 2.3.2 Structure -- 2.3.3 Chirality -- 2.4 Biological Activity -- 2.4.1 Antibacterial -- 2.4.2 Anticancer -- 2.4.3 Biodistribution and Metabolism -- 2.5 Mechanism of Action -- 2.5.1 Nucleobase and DNA Binding -- 2.5.2 Amino Acids and Proteins -- 2.5.3 Aquation -- 2.6 Conclusions -- References -- 3 Organometallics Targeted to Specific Biological Sites: the Development of New Therapies -- 3.1 Introduction -- 3.2 Overview of Previous Developments -- 3.3 Metal Complex SERMs (Selective Estrogen Receptor Modulators) -- 3.3.1 Inorganic Complexes of Platinum -- 3.3.2 Carborane Derivatives with Estrogenic Properties -- 3.3.3 Titanocene Dichloride Derivative of Tamoxifen -- 3.3.4 Cyclopentadienyl Rhenium Tricarbonyl Derivatives of Tamoxifen Derivatives -- 3.3.5 Ferrocene Tamoxifen Derivatives (Ferrocifens) -- 3.3.6 Ruthenocene Tamoxifen Derivatives -- 3.3.7 Conclusion for SERMs -- 3.4 The Alkyne Cobalt Carbonyl Complexes. , 3.5 Ferroquine, a New Weapon in the Fight Against Malaria: the Archetypical Bioorganometallic Approach -- 3.5.1 The Problem of Malaria -- 3.5.2 Ferroquine: a Bioorganometallic Approach -- 3.5.3 Conclusion for Ferroquine -- 3.6 Other Examples of Organometallics Complexes Tested for their Biological Activities -- 3.7 Conclusions -- References -- 4 Radiopharmaceuticals -- 4.1 What are Radiopharmaceuticals? -- 4.1.1 Radiopharmaceutical Drug Finding and Drug Development -- 4.1.2 Organometallic Complexes in Radiopharmaceutical Routines -- 4.2 Organometallic Aquo-ions -- 4.3 The Prototype [(99)Tc(OH(2))(3)(CO)(3)](+), Synthesis and Properties -- 4.3.1 Coordination Chemistry with [(99)Tc(OH(2))(3)(CO)(3)](+) -- 4.3.2 Organometallic Chemistry in Water with [(99)Tc(OH(2))(3)(CO)(3)](+) -- 4.4 Combining [(99)Tc(OH(2))(3)(CO)(3)](+) with Targeting Vectors -- 4.5 Perspectives -- References -- 5 Conjugates of Peptides and PNA with Organometallic Complexes: Syntheses and Applications -- 5.1 Introduction -- 5.2 Conjugates of Organometallics with Small Peptides -- 5.2.1 Organometallics as Templates for the Induction of Secondary Structural Elements in Peptides -- 5.2.1.1 Derivatives of 1,1'-Ferrocene Dicarboxylic Acid -- 5.2.1.2 Other Derivatives -- 5.2.2 Peptides as Ligands for Organometallics -- 5.3 Conjugates of Organometallics with Natural Peptides -- 5.3.1 Organometallic Derivatives of Enkephalins -- 5.3.2 Organometallic Derivatives of Peptide Hormones -- 5.3.2.1 Substance P and Neurokinin A -- 5.3.2.2 Angiotensin -- 5.3.2.3 Bradykinin -- 5.3.2.4 Gonadotropin-releasing Hormone -- 5.3.2.5 Secretin -- 5.3.3 Organometallic Derivatives of Other Peptides -- 5.3.3.1 Nuclear Localization Signal -- 5.3.3.2 Glutathione -- 5.3.3.3 Papain Inhibitors -- 5.3.3.4 Alamethicin -- 5.3.3.5 Others -- 5.3.4 Enzymatic Degradation of Organometallic Peptide Derivatives. , 5.4 Conjugates of Organometallics with PNA -- 5.4.1 Conjugates of PNA Monomers -- 5.4.2 Conjugates of PNA Oligomers -- 5.5 Applications -- 5.5.1 Organometallic Protecting Groups for Peptide Synthesis -- 5.5.1.1 Ferrocene-derived Protecting Groups -- 5.5.1.2 Aminocarbene-derived Protecting Groups -- 5.5.2 Peptide Synthesis -- 5.5.2.1 Template Synthesis of Peptides with Organometallics -- 5.5.2.2 Ugi Four-component Reaction -- 5.5.2.3 Ruthenium-mediated Coupling of Aryl Ethers for the Synthesis of Cyclic Peptides -- 5.5.3 Labeling of Peptides -- 5.5.3.1 HPLC with Electrochemical Detection (HPLC-ECD) -- 5.5.3.2 Radioactive Labels -- 5.5.4 Host-guest Chemistry and Biosensors -- References -- 6 Labeling of Proteins with Organometallic Complexes: Strategies and Applications -- 6.1 Introduction -- 6.2 Redox Probes -- 6.2.1 Amperometric Biosensors -- 6.2.1.1 Diffusional Mediators -- 6.2.1.2 Electron Relays -- 6.2.1.3 Electrical Wiring -- 6.2.2 HPLC and Immunoassays -- 6.2.3 Enzyme Structural Studies -- 6.2.4 Other applications -- 6.3 Luminescent Probes -- 6.3.1 Long-lived Probes -- 6.3.2 Electron Tunneling Studies -- 6.4 Heavy Metal Probes -- 6.4.1 Structural Analysis of Proteins by X-ray Crystallography -- 6.4.2 Cryo-electron Microscopy -- 6.4.3 Pharmacological Studies -- 6.5 Metallo-carbonyl Probes for Infrared Spectroscopy -- 6.6 Conclusions and Outlook -- References -- 7 Organometallic Bioprobes -- 7.1 Introduction -- 7.2 The Definition of the Terms Bioprobes and Molecular Bioprobes -- 7.3 Response Strategies for the Read-out of Information -- 7.4 Organometallic Components for Organometallic Bioprobes - Opening up the Advantages of IR-based Read-out Methods -- 7.5 Selectivity of Responses in IR-based Read-out Methods -- 7.5.1 Solvent-induced Effects -- 7.5.2 Responses to pH -- 7.5.3 Responses to Alkali Metal Ion Concentrations. , 7.5.4 Responses to π-Stacking Interactions between Organic Structures -- 7.6 Examples of Organometalcarbonyl Bioprobe Structures -- 7.7 Use of Organometallic Bioprobes with Proteins -- 7.8 Power of Genetics in the Design of Bioprobe Experiments -- 7.8.1 Remote and Local Response Capabilities -- 7.8.2 Functional and Dysfunctional Probes -- 7.8.3 Functional and Dysfunctional Receptors -- 7.8.4 Functional and Dysfunctional Probes and Receptors to Study the Induction of nod Gene Expression -- 7.9 Conclusions -- References -- 8 Organometallic Complexes as Tracers in Non-isotopic Immunoassay -- 8.1 Introduction -- 8.2 Principle of an Immunoassay -- 8.3 Obtaining Specific Antibodies -- 8.4 Synthesis of the Organometallic Tracers -- 8.4.1 Preparation of Tracers Labeled with Ferrocene -- 8.4.1.1 Preparation of a Tracer for Lidocaine -- 8.4.1.2 Preparation of a Tracer for Theophylline -- 8.4.1.3 Preparation of a Tracer for Triiodothyronine -- 8.4.1.4 Labeling of Antibodies (IgG) -- 8.4.2 Preparation of a Tracer for Diphenylhydantoin Labeled with a (Cyclopentadienyl)dicarbonyl Iron (Fp) Entity -- 8.4.3 Synthesis of Tracers Labeled with a Cymantrene (Cyclopentadienyl Manganese Tricarbonyl) Entity -- 8.4.3.1 Preparation of Tracers for Nortriptyline and Phenobarbital -- 8.4.3.2 Preparation of a Tracer for Chlortoluron -- 8.4.3.3 Preparation of a Tracer for Biotin -- 8.4.4 Synthesis of Diphenylhydantoin Bearing a Benchrotrene (Benzene chromium Tricarbonyl) Entity -- 8.4.5 Synthesis of Tracers Bearing an Alkyne Dicobalt Hexacarbonyl Moiety -- 8.4.5.1 Preparation of Tracers for Cortisol and Atrazine -- 8.4.5.2 Preparation of a Tracer for Carbamazepine -- 8.4.6 Synthesis of Cationic Tracers -- 8.4.6.1 Tracers Labeled with a Cobaltocenium Entity -- 8.4.6.2 Cationic Tracers Including a Ferrocene Entity. , 8.4.7 Synthesis of a Tracer Bearing a Rhenium Tricarbonyl Fragment -- 8.5 Examples of Mono- and Multi-metalloimmunoassays (MIA) -- 8.5.1 Metalloimmunoassay Using Atomic Absorption Spectroscopy -- 8.5.2 Detection by Fourier-transform Infrared Spectroscopy (Carbonyl Metalloimmuno Assay, CMIA) -- 8.5.2.1 Mono-immunoassays by CMIA -- 8.5.2.2 Multi-immunoassay by CMIA -- 8.5.2.3 New Developments in the CMIA Method -- 8.5.3 Electrochemical Detection -- 8.5.3.1 Homogeneous Ferrocene-mediated Amperometric Immunoassay -- 8.5.3.2 Homogeneous Electrochemical Immunoassay (Square Wave Voltammetry) -- 8.5.3.3 Electrochemical Flow Immunoassay System -- 8.5.4 Detection by Fluorescence Polarization (FP) -- 8.6 Use of Organometallic Complexes as Substrates or Co-substrates for Enzyme Immunoassay -- 8.6.1 Organometallic Complexes Used as Enzyme Substrates -- 8.6.2 Organometallic Complexes Used as Enzyme Co-substrates (Redox Mediators) -- 8.6.2.1 Flow Injection Immunoassay with Electrochemical Detection -- 8.6.2.2 Dual Enzyme Immunoassay with Amperometric Detection -- 8.6.2.3 Dual Enzyme Immunoassay Using Electrochemical Microscopy Detection -- 8.7 Conclusions -- References -- 9 Genosensors Based on Metal Complexes -- 9.1 Introduction -- 9.2 Metal Complexes as DNA Probes -- 9.2.1 Cationic Metal Complexes -- 9.2.2 Metal Complexes Conjugated with a DNA Fragment or DNA-binding Ligand -- 9.3 Electrochemical Analysis of the Interaction of Metal Complexes with dsDNA -- 9.4 Gene Detection Based on a Cationic Metal Complex or Metal Complex Conjugated with DNA-binding Ligand -- 9.5 Gene Detection Based on Ferrocenyl Oligonucleotides as a Metal Complex Conjugated with DNA Fragments -- 9.6 Conclusions -- References -- 10 Supramolecular Host Recognition Processes with Biological Compounds, Organometallic Pharmaceuticals, and Alkali-metal Ions as Guests -- 10.1 Introduction. , 10.2 Host 1.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Biochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (421 pages)
    Edition: 1st ed.
    ISBN: 9783527673469
    Language: English
    Note: Bioorganometallic Chemistry: Applications in Drug Discovery, Biocatalysis, and Imaging -- Contents -- List of Contributors -- Preface -- Part One: Medicinal Chemistry -- 1. Organometallic Complexes as Enzyme Inhibitors: A Conceptual Overview -- 1.1 Introduction -- 1.2 Organometallic Compounds as Inert Structural Scaffolds for Enzyme Inhibition -- 1.3 Organometallic Compounds Targeting Specific Protein Residues -- 1.4 The Bioisosteric Substitution -- 1.5 Novel Mechanisms of Enzyme Inhibition with Organometallic Compounds -- 1.6 Organometallic Compounds as Cargo Delivers of Enzyme Inhibitors -- 1.7 Organometallic Enzyme Inhibitors for Theranostic Purposes -- 1.8 Conclusion -- Acknowledgments -- Abbreviations -- References -- 2. The Biological Target Potential of Organometallic Steroids -- 2.1 Introductory Note on Nuclear Receptors -- 2.1.1 Early History -- 2.1.2 Primary Structure of Nuclear Receptors -- 2.1.3 Estrogen Receptors -- 2.1.4 Androgens -- 2.1.5 Glucocorticoids -- 2.1.6 Progesterone and Progestogens -- 2.1.7 Mineralocorticoids and Aldosterone -- 2.1.8 Selective Modulators of Nuclear Receptors -- 2.1.8.1 Selective Estrogen Receptor Modulators (SERMs) -- 2.1.8.2 Selective Androgen Receptor Modulators (SARMs) -- 2.1.8.3 Selective Progesterone Receptor Modulators (SPRMs) -- 2.1.9 Mechanism of Action of Nuclear Receptors -- 2.1.10 Endocrine Disruptors -- 2.2 Steroids and Organometallics: An Overview of the Transitional Period from the Use of Organometallics in Synthesis to the Emergence of Bioorganometallics -- 2.2.1 Early Examples of Organometallic Estradiol Derivatives with Biological Potential: Modified Hormone Shown to Bind to Estrogen Receptor α -- 2.2.2 Examples of Estrogens Modified by Organometallics at the 11β-Position -- 2.2.3 Targeting Prostate Cancer with Organometallic Androgens and Antiandrogens. , 2.2.4 Approach Toward Organometallic Radiopharmaceuticals -- 2.2.4.1 Steroidal Derivatives -- 2.2.4.2 Nonsteroidal Complexes -- 2.3 Epilog -- Acknowledgments -- References -- 3. Chirality in Organometallic Anticancer Complexes -- 3.1 Introduction -- 3.2 Chirality in Arene Complexes -- 3.3 CIP System for the Nomenclature of Chiral-at-Metal Arene Complexes -- 3.4 Chiral Organometallic Complexes as Anticancer Agents -- 3.4.1 Chiral Carbene Complexes -- 3.4.2 Chiral Metallocene Complexes -- 3.4.3 Chiral Half-Sandwich Arene Complexes -- 3.4.4 Chirality at Metal in Supramolecular Complexes -- 3.5 Half-Sandwich Complexes with Chiral Metal Centers -- 3.5.1 Factors Influencing the Chirality at the Metal Center -- 3.5.1.1 Use of Chiral Ligands for Chiral Resolution at the Metal Center: Diastereoisomerism -- 3.5.1.2 CH-π Interactions: β-Phenyl Effect and Hydrogen Bond Interactions -- 3.5.1.3 Effect of the Temperature, Solvent and Ligands on the Metal Configuration -- 3.6 Conclusions -- Acknowledgments -- References -- 4. Gold Organometallics with Biological Properties -- 4.1 Introduction: The Use of Gold in Medicine -- 4.2 Anticancer Gold Organometallics and Proposed Biological Targets -- 4.2.1 Cyclometalated Gold(III) Complexes with C,N-Donor Ligands -- 4.2.1.1 Types of Cycloaurated Complexes, Synthetic Methods, and Reactivity -- 4.2.1.2 Cycloaurated Complexes with Biological Activities -- 4.2.2 Gold N-Heterocyclic Carbene (NHC) Complexes -- 4.2.3 Gold Alkynyl Complexes -- 4.3 Conclusions and Perspectives -- List of Abbreviations -- References -- 5. On the Molecular Mechanisms of the Antimalarial Action of Ferroquine -- 5.1 History and Development -- 5.2 Mechanism(s) of Action of 4-Aminoquinoline Antimalarials -- 5.3 Mechanism(s) of Action of Ferroquine as an Antimalarial -- 5.3.1 Antimalarial Activity -- 5.3.2 Metabolic Pathway of Ferroquine. , 5.3.3 Redox Properties of FQ -- 5.3.4 Basic Properties and Accumulation -- 5.3.5 Importance of Redox Properties of Ferrocene on Antimalarial Activity of FQ -- 5.3.6 Inhibition of Hemozoin Formation -- 5.4 Conclusion -- Acknowledgments -- List of Abbreviations -- References -- 6. Metal Carbonyl Prodrugs: CO Delivery and Beyond -- 6.1 Introducing CO in Biology -- 6.1.1 Origin -- 6.1.2 Biological Action and Targets of CO -- 6.1.3 Therapeutic Outlook -- 6.1.4 Measuring CO in Biology -- 6.2 Therapeutic Delivery of CO -- 6.2.1 CO Gas and Inhalation -- 6.2.2 Prodrugs for CO Delivery: CO-Releasing Molecules (CORM) -- 6.2.2.1 Definitions and Concept -- 6.2.3 Early CORMs -- 6.2.3.1 Nonmetal-Based CORMs -- 6.2.3.2 Metal Carbonyl-Based CORMs -- 6.2.4 The Chemical Biology of Early CORMs -- 6.2.4.1 [Ru(CO)3]2+-Based CORMs -- 6.2.4.2 [Mo(CO)n]-Based CORMs -- 6.2.4.3 Miscellaneous Biologically Significant Observations on Early-Stage CORMs -- 6.3 Biological and Therapeutic Results Obtained with the Early-Stage CORMs -- 6.3.1 CORM and Inflammatory Response -- 6.3.2 Cardioprotective Effects of CORM -- 6.3.3 Central Nervous System and CORMs -- 6.3.4 Transplantation -- 6.3.5 Bactericide Effects of CORMs -- 6.3.6 CORMs: Tissue Regeneration and Modulation of Cell Proliferation/Differentiation -- 6.3.7 CORMs and Cancer Therapy? -- 6.4 Beyond the Early-Stage CORMs: Strategies for Finding New Candidates -- 6.4.1 Evaluation of CO Release from CORMs -- 6.4.2 Light Activated or photoCORMs -- 6.4.3 Chemically Activated CORMs -- 6.4.4 Bioactivated or Enzyme-Triggered CORMs (ET-CORMs) -- 6.5 Intracellular Detection of CORMs, Mechanistic Studies, and Other Unanswered Questions -- 6.6 Designing Pharmacologically Useful, Drug-like CORMs -- 6.6.1 The First Drug-like CORM -- 6.7 Final Remarks and Perspectives -- List of Abbreviations -- References. , 7. Dinitrosyl Iron Complexes with Natural Thiol-Containing Ligands: Physicochemistry, Biology, and Medicine -- 7.1 Introduction -- 7.2 The History of Detection and Identification of DNIC with Thiol-Containing Ligands in Microorganisms and Animal Tissues -- 7.3 Physicochemistry of DNIC with Natural Thiol-Containing Ligands -- 7.3.1 Mono- and Binuclear forms of DNIC with Natural Thiol-Containing Ligands -- 7.3.2 Two Approaches to the Synthesis of DNIC with Natural Thiol-Containing Ligands -- 7.3.3 Mechanisms of Formation of DNIC with Natural Thiol-Containing Ligands -- 7.3.4 The Electronic and Spatial Structures of DNIC with Thiol-Containing Ligands -- 7.3.5 DNIC with Thiol-Containing Ligands as NO and NO Donors -- 7.4 Biological Effects of DNIC with Thiol-Containing Ligands -- 7.4.1 S-Nitrosating Effect of DNIC with Thiol-Containing Ligands -- 7.4.2 Vasodilator and Hypotensive Effects of DNIC with Thiol-Containing Ligands -- 7.4.3 Inhibiting Effect of DNIC with Thiol-Containing Ligands on Platelet Aggregation -- 7.4.4 DNIC with Thiol-Containing Ligands Increase Erythrocyte Elasticity -- 7.4.5 DNIC with Thiol-Containing Ligands Accelerate Skin Wound Healing in Animals -- 7.4.6 Erective Activity of DNIC -- 7.4.7 DNIC and Apoptosis -- 7.4.8 DNIC with Glutathione Inhibits the Development of Experimental Endometriosis in Rats -- 7.4.9 Other Examples of Biological Effects of DNIC with Thiol-Containing Ligands -- 7.5 DNIC with Thiol-Containing Ligands as a Basis in the Design of Drugs with a Broad Range of Therapeutic Activities -- List of Abbreviations -- Acknowledgments -- References -- Part Two: Metalloproteins, Catalysis, and Energy Production -- 8. The Bioorganometallic Chemistry of Hydrogenase -- 8.1 Introduction -- 8.1.1 Hydrogenase -- 8.1.2 The Chemistry of Hydrogen -- 8.1.3 Dihydrogen Metal Complexes -- 8.1.4 First Coordination Sphere Ligands. , 8.2 Structure and Function -- 8.2.1 The Active Sites of the Hydrogenases -- 8.2.1.1 [NiFe]- and [FeFe]-Hydrogenase -- 8.2.1.2 [Fe]-Hydrogenase -- 8.2.2 The Mechanisms of the Hydrogenases -- 8.3 Natural Biosynthesis and Synthetic Analogs of the Active Sites -- 8.3.1 Natural Biosynthesis of Hydrogenase Active Sites -- 8.3.1.1 Biosynthesis of [NiFe]-Hydrogenase -- 8.3.1.2 Biosynthesis of [FeFe]-Hydrogenase -- 8.3.2 Synthetic Analogs -- 8.3.2.1 Models of the [NiFe]-Hydrogenase Active Site -- 8.3.2.2 Models of the [FeFe]-Hydrogenase Active Site -- 8.3.2.3 Models of the [Fe]-Hydrogenase Active Site -- 8.4 Comments and Conclusion -- References -- 9. Bio-Organometallic Systems for the Hydrogen Economy: Engineering of Electrode Materials and Light-Driven Devices -- 9.1 Introduction -- 9.2 Electrode Materials for Hydrogen Evolution and Uptake -- 9.2.1 Electrode Materials-Based on Hydrogenases -- 9.2.2 Hydrogen Fuel Cell Electrodes Based on Hydrogenases -- 9.2.3 Electrode Materials Based on Bio-inspired Molecular Catalysts -- 9.2.3.1 Covalent Attachment of Catalyst to Electrode Material -- 9.2.3.2 Noncovalent Attachment of Catalyst to Electrode Material via π-π Stacking Interaction -- 9.3 Light-Driven Systems for Hydrogen Evolution -- 9.3.1 Biological and Biohybrid Systems -- 9.3.2 Bio-inspired Catalysis Approaches -- 9.3.2.1 Iron-Based Catalysts -- 9.3.2.2 Nickel-Based Catalysts -- 9.3.2.3 First Approaches toward Molecular-Based Photoelectrodes -- 9.4 Artificial Photosynthetic Systems -- 9.5 Summary and Conclusions -- List of Abbreviations -- References -- 10. Artificial Metalloenzymes Containing an Organometallic Active Site -- 10.1 Introduction -- 10.2 Dative Anchoring -- 10.2.1 Metalloproteins as Protein Hosts -- 10.2.2 Other Protein Hosts -- 10.3 Supramolecular Anchoring -- 10.3.1 (Strept)avidin as Protein Hosts -- 10.3.2 Antibodies as Protein Hosts. , 10.3.3 Other Protein Hosts.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Organometallic chemistry. ; Biochemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (304 pages)
    Edition: 1st ed.
    ISBN: 9783642131851
    Series Statement: Topics in Organometallic Chemistry Series ; v.32
    DDC: 615.2
    Language: English
    Note: Intro -- Medicinal Organometallic Chemistry -- Topics in Organometallic Chemistry Also Available Electronically -- Introduction -- References -- Contents -- Arsenic-Based Drugs: From Fowler´s Solution to Modern Anticancer Chemotherapy -- 1 Introduction -- 2 Malaria and Fevers -- 3 Trypanosomiasis -- 3.1 Atoxyl -- 3.2 Tryparsamide -- 3.3 Melaminophenyl Arsenicals -- 4 Syphilis -- 4.1 Arsphénamines -- 4.2 Arseno-Metallic Compounds -- 5 Treatment of Amebiasis, Worms, Trichomonas Vaginalis, and Vincent´s Angina -- 6 Blood Diseases and Disorders -- 7 Conclusion -- References -- Activation Mechanisms for Organometallic Anticancer Complexes -- 1 Introduction -- 2 Activation Through Cleavage of M-X Bonds -- 2.1 Titanocenes -- 2.2 Ruthenium and Osmium Arenes -- 2.2.1 Hydrolysis of the Ru-Z Bond -- 2.2.2 Hydrolysis of the Os-Z Bond -- 2.2.3 Sulfur Oxidation -- 2.2.4 Bifunctional Ru Arenes -- 2.2.5 Chelate Ring Redox -- 2.2.6 Irradiation -- 2.3 Other Transition Metal Complexes -- 3 Metal Complexes as Catalytic Drugs -- 4 Structural Scaffolds -- 4.1 Ferrocenes and Ferrocenyl Derivatives -- 4.2 Glutathione-S-Transferase Inhibitors -- 4.3 Kinase Inhibitors -- 4.4 COX Inhibitors -- 5 Metal as a Carrier for Active Ligands -- 5.1 Side-Chain Hydrolysis -- 5.2 Ruthenium Cages -- 6 Photoactivation and Photosensitizers -- 7 Organotins -- 8 The Future for Medicinal Organometallics -- References -- Organometallic Antitumour Agents with Alternative Modes of Action -- 1 Introduction -- 2 DNA as a Target -- 3 Organoruthenium Compounds -- 4 Ruthenium-Arene PTA (RAPTA) Compounds -- 5 RAPTA Targets -- 6 Ruthenium-Arene Targeted Drugs -- 7 Organogold Compounds -- 8 Proposed Targets -- 9 Protein-Mediated Tumour Targeting -- 10 Concluding Remarks -- References -- Ferrocene Functionalized Endocrine Modulators as Anticancer Agents -- 1 Ferrocene and Medicinal Chemistry. , 2 Breast and Prostate Cancer -- 3 Hydroxyferrocifens -- 4 Ferrocenyl Raloxifen Derivatives -- 5 Ferrocenyl Oestradiol Derivatives -- 6 Anti-cancer Structure-Activity Relationship Studies of Hydroxyferrocifens -- 6.1 N, N-dimethylamino Side Chain -- 6.2 Presence and Position of the Phenol Group -- 6.3 Role of the Ferrocene Moiety -- 6.4 Conjugation -- 6.5 Phenyl Functionalisation -- 6.6 Placement of the Ferrocene Group -- 6.7 Cyclic Compounds -- 7 Mechanism -- 8 Formulation Studies -- 9 Ferrocenyl Androgens and Anti-androgens -- 10 Summary -- References -- Titanocenes: Cytotoxic and Anti-angiogenic Chemotherapy Against Advanced Renal-Cell Cancer -- 1 Introduction -- 2 Benzyl-Substituted Titanocenes via Hydridolithiation -- 3 Chiral Mixtures of Titanocenes via Carbolithiation -- 4 Achiral Titanocenes via Carbolithiation -- 5 Biological Evaluation -- 6 Conclusions and Outlook -- References -- Organometallics as Structural Scaffolds for Enzyme Inhibitor Design -- 1 Introduction -- 2 Metal Complexes as Structural Scaffolds -- 3 Organometallic Protein Kinase Inhibitors -- 3.1 Protein Kinases as Drug Targets -- 3.2 Staurosporine as an Inspiration for Organometallic Inhibitors -- 3.3 Crystal Structures of Organometallic Compounds Bound to the ATP Binding Site of Protein Kinases -- 3.4 Anticancer Properties of Organometallic Kinase Inhibitors -- 4 Conclusion -- References -- Bioorganometallic Chemistry and Malaria -- 1 Introduction -- 1.1 Malaria: The Burden and the Problems -- 1.2 The Digestive Vacuole of Parasite and Hemoglobin Digestion -- 1.3 Drug Resistance -- 2 Metal Complexes as Antimalarials: An Overview -- 2.1 Ferrocenic Molecules with Antimalarial Properties -- 2.2 Ferrocene Conjugates with Antimalarial Drugs Other Than Chloroquine -- 2.2.1 Artemisinin -- 2.2.2 Atovaquone -- 2.2.3 Mefloquine and Quinine. , 2.2.4 Ferrocenyl Pyrrolo[1,2-a]quinoxaline Derivatives -- 2.2.5 Ciprofloxacin -- 2.3 Ferrocene Conjugates with Chloroquine -- 2.3.1 Quinoline Ring Substitutions -- 2.3.2 Lateral Side Chain Modifications -- 2.3.3 N-N Spacer Modifications -- 2.3.4 Bisquinolines -- 3 Ferroquine: A New Candidate Antimalarial Drug -- 3.1 The Chemistry of Ferroquine -- 3.2 Ferroquine Derivatives -- 3.3 Specific Pharmacology -- 3.4 Metabolism, ADME, and Toxicology -- 3.5 A Brief Industrial Development Story -- 4 Mechanism(s) of Action of Ferroquine -- 4.1 Inhibition of Hemozoin Formation -- 4.2 Specific Drug Targeting -- 4.3 A Critical Intramolecular Hydrogen Bond -- 4.4 Production of Reactive Oxygen Species -- 5 Conclusion -- References -- Biomedical Applications of Organometal-Peptide Conjugates -- 1 Introduction -- 2 Chemical Synthesis of Metal-Peptide Conjugates -- 2.1 Synthesis in Solution -- 2.2 Solid-Phase Peptide Synthesis -- 2.2.1 N-Terminal Derivatization -- 2.2.2 Side Chain Derivatization -- 2.2.3 C-Terminal Modification -- 3 Biomedical Applications -- 3.1 Radiopharmaceutical Applications -- 3.2 Anticancer Activity -- 3.3 Antibacterial Activity -- 3.4 Cell Uptake and Intracellular Localization -- 3.5 Biosensors and Molecular Recognition -- 4 Summary -- References -- Organometallic Radiopharmaceuticals -- 1 Introduction -- 2 Building Blocks for Organometallic Radiopharmaceuticals -- 3 Technetium Essential Organometallic Radiopharmaceuticals -- 4 Targeting Organometallic Radiopharmaceuticals -- 4.1 Fatty Acids -- 4.2 Targeting the Folate Receptor with Organometallic Complexes -- 4.3 Competing with PET: Carbohydrates Labeled with 99mTc Organometallic Complexes -- 4.4 Targeting Enzymes: 99mTc-Labeled Thymidine for TKs -- 4.5 Very Small and Essential Biomolecules: α-Amino Acids -- 4.6 Vitamin B12: An Organometallic Coenzyme for Organometallic Complexes. , 4.7 Targeting the Cell Nucleus -- 4.8 Drug Finding and Development: The Single Amino Acid Chelate Approach -- 5 New eta5-Coordinating Ligands: Cyclopentadienyl and Carborane Complexes -- 6 Conclusion and Perspectives -- References -- Carbon Monoxide: An Essential Signalling Molecule -- 1 Introduction -- 2 The Role of CO In Vivo -- 3 Sites of Action of CO -- 3.1 Guanylyl Cyclase -- 3.2 Na+ and KCa+ Channels -- 3.3 Hemes and Cytochromes -- 3.4 Other Possible Binding Sites for CO -- 4 CO-Releasing Molecules (CO-RMs) -- 4.1 Initial Discovery -- 4.2 Ruthenium CO-RMs -- 4.2.1 [Ru(CO)3Cl2]2 (CORM-2) -- 4.2.2 [Ru(CO)3Cl(glycinate)] (CORM-3) -- 4.2.3 Other Ruthenium Compounds -- 4.3 Iron CO-RMs -- 4.3.1 Heme-Based Carriers -- 4.3.2 [CpFe(CO)3]+ and Its Derivatives -- 4.3.3 [(eta4-2-pyrone)Fe(CO)3] -- 4.3.4 Other Iron CO-RMs -- 4.4 Manganese CO-RMs -- 4.4.1 [Mn2(CO)10], CORM-1 -- 4.4.2 [Mn(CO)5X], X=Cl, Br, I -- 4.4.3 [Mn(CO)4X2]-, X=Br, I, SC(O)Me [13, 204] -- 4.4.4 [Mn(CO)4(eta2-S2CR)], R=NEt2, NMeCH2CO2H, N(CH2CH2OH)2, OEt, and [Mn(CO)4{eta2-S2P(OEt)2}] [204] -- 4.4.5 [Mn2(CO)6X3]-, X=Cl, OAc [204] -- 4.4.6 Other Manganese Compounds -- 4.5 Vanadium -- 4.6 Chromium -- 4.7 Molybdenum -- 4.7.1 [Mo(CO)5X]-, X=Cl, Br, I, and [Mo{=C(OMe)Me}(CO)5] -- 4.7.2 [CpMo(CO)3(pyrone)]+ -- 4.7.3 Mo(CO)3L, L=nitrilotriacetate, 4-[[bis(2-pyridinylmethyl)amino]methyl]-benzoate, diethylenetriamine-N,N,N,N,N-pentaacetat -- 4.7.4 [NEt4][MoI3(CO)4] -- 4.8 Tungsten -- 4.9 Cobalt -- 4.10 Boron. Na[H3BCO2H], CORM-A1 -- 4.11 Organic Compounds as Sources of CO -- 5 Detection of CO Release -- 5.1 Manometric -- 5.2 Gas Chromatography -- 5.3 CO Electrode -- 5.4 Myoglobin -- 6 Mechanisms of CO Release -- 7 Some Potential Applications of CO Gas and CO-RMs in Medicine -- 8 Patents -- 9 The Future -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 27 (1988), S. 1850-1852 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 46 (1981), S. 78-82 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-4812
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...