GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-01
    Description: We investigate the upper crustal velocity structure beneath the Rwenzori Mountains in western Uganda. This mountain range of nonvolcanic origin is situated within the western branch of the East African rift and reaches altitudes of more than 5000 m. The cause for the extreme uplift within a rifting environment is currently being debated. The local tomographic inversion described here is based on 2053 earthquakes recorded by a network of up to 35 stations covering an area of 140x90 km2. The deployment was limited by the international border between Uganda and the Democratic Republic of the Congo, such that a number of recorded events lie outside the station perimeter. We perform synthetic tests to assess the effect of location uncertainty on the results. The tests show that the resolution is good between 3 and 15 km depth within a restricted area covered by the array. However, smearing can be significant in some parts. The inversion for P- and S-wave velocity anomalies is performed independently and agrees well. The interpretation of the results is based on a synthetic model that reproduces the same pattern of anomalies as that obtained after inversion of the real data. Our models exhibit a significant negative velocity anomaly (up to -8%) beneath the central Rwenzori Mountains. This could be an indication for active magmatic intrusions beneath the mountains in relation to the rifting. The presence of low velocities in the northwest of the range, within the rift, may be related to magmatic processes beneath the Buranga hot springs. Higher velocities are found elsewhere beneath the eastern rift shoulder and are thought to be related to old cratonic crust.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-03
    Description: The Klyuchevskoy Volcanic Group is a cluster of the world's most active subduction volcanoes, situated on the Kamchatka Peninsula, Russia. The volcanoes lie in an unusual off‐arc position within the Central Kamchatka Depression (CKD), a large sedimentary basin whose origin is not fully understood. Many gaps also remain in the knowledge of the crustal magmatic plumbing system of these volcanoes. We conducted an ambient noise surface wave tomography, to image the 3‐D shear wave velocity structure of the Klyuchevskoy Volcanic Group and CKD within the surrounding region. Vertical component cross correlations of the continuous seismic noise are used to measure interstation Rayleigh wave group and phase traveltimes. We perform a two‐step surface wave tomography to model the 3‐D Vsv velocity structure. For each inversion stage we use a transdimensional Bayesian Monte Carlo approach, with coupled uncertainty propagation. This ensures that our model provides a reliable 3‐D velocity image of the upper 15 km of the crust, as well as a robust assessment of the uncertainty in the observed structure. Beneath the active volcanoes, we image small slow velocity anomalies at depths of 2–5 km but find no evidence for magma storage regions deeper than 5 km—noting the 15 km depth limit of the model. We also map two clearly defined sedimentary layers within the CKD, revealing an extensive 8 km deep sedimentary accumulation. This volume of sediments is consistent with the possibility that the CKD was formed as an Eocene‐Pliocene fore‐arc regime, rather than by recent (〈2 Ma) back‐arc extension.
    Description: Plain Language Summary: The Klyuchevskoy Volcanic Group is a cluster of 13 volcanoes on the Kamchatkan corner of the Pacific ring of fire. The volcanoes regularly produce large eruptions, but good knowledge of the magma plumbing system beneath the surface is still lacking. Why the Klyuchevskoy Volcanic Group volcanoes lie in the location they do, in a large low‐lying depression, is also unexplained. We undertook a seismic experiment and used the data to produce a 3‐D velocity image of the subsurface beneath the volcanoes and the depression. We found that small regions of slow seismic velocity are located beneath the active volcanoes, at 2–5 km depth below sea level. This slower velocity is probably caused by magma lying within the porous fracture spaces in this rock. The seismic velocities are much faster beneath the dormant volcanoes, suggesting they have no magma beneath them. With our velocity image, we also find that the Central Kamchatka Depression is very deep, filled with over 8 km of sediments. This supports an idea that the sediments accumulated as a fore‐arc basin over many millions of years, since 40 Ma, when the active line of volcanoes was found 100 km to the west.
    Description: Key Points: Three‐dimensional shear velocity structure of the Klyuchevskoy area was determined using coupled transdimensional Monte Carlo inversions. Slow velocity anomalies suggest magma storage beneath active volcanoes at 2–5 km depth (below sea level) but not in the midcrust. Sediments filling the Central Kamchatka Depression are 8 km deep, consistent with an origin of the depression as a fore‐arc basin.
    Description: European Union Horizon 2020 Research and Innovation Programme http://dx.doi.org/10.13039/501100007601
    Description: Russian Ministry of Education and Science http://dx.doi.org/10.13039/501100003443
    Description: Alexander von Humboldt Foundation http://dx.doi.org/10.13039/100005156
    Keywords: 551.1 ; tomography ; Central Kamchatka Depression ; transdimensional ; Bayesian ; ambient noise ; Klyuchevskoy Volcanic Group
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-01
    Description: Klyuchevskoy and surrounding volcanoes in central Kamchatka form the Northern Group of Volcanoes (NGV), which is an area of particularly diverse and intensive Pleistocene‐Holocene volcanism. In this study, we present a new seismic tomographic model of the crust and uppermost mantle beneath NGV based on local earthquake data recorded by several permanent and temporary seismic networks including a large‐scale experiment that was conducted in 2015–2016 by an international scientific consortium. Having an unprecedented resolution for this part of Kamchatka, the new model reveals many features associated with the present and past volcanic activity within the NGV. In the upper crust, we found several prominent high‐velocity anomalies interpreted as traces of large basaltic shield volcanoes, which were hidden by more recent volcanic structures and sediments. We interpret the mantle structure to reflect asthenospheric flow up through a slab window below the Kamchatka‐Aleutian junction that feeds the entire NGV. The interaction of the hot asthenospheric material with fluids released from the slab determines the particular volcanic activity within the NGV. We argue that the eastern branch of the Central Kamchatka Depression, which is associated with a prominent low‐velocity anomaly in the uppermost mantle, was formed as a recent rift zone separating the NGV from the Kamchatka Eastern Ranges.
    Description: Key Points: We present a new high‐resolution seismic model of the crust and upper mantle beneath the Northern Group of Volcanoes in Kamchatka. The volcanoes of the Northern group are fed by an asthenosphere flow ascending from a slab window below the Kamchatka‐Aleutian junction. Eastern branch of the Central Kamchatka Depression is a rift separating the Northern Group of Volcanoes from the Eastern Ranges.
    Description: Russian Ministry of Science and Education http://dx.doi.org/10.13039/501100012190
    Description: Russian Science Foundation http://dx.doi.org/10.13039/100004111
    Description: RFBR http://dx.doi.org/10.13039/501100002261
    Description: European Union Horizon 2020 Research and Innovation Programme http://dx.doi.org/10.13039/501100012190
    Keywords: 551.2 ; seismic tomography ; subduction ; Klyuchevskoy Group of Volcanoes ; Shiveluch ; Kizimen ; Central Kamchatka Depression
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-12
    Description: The world’s strongest known spreading-related seismicity swarm occurred in 1999 in a segment of the Gakkel Ridge located at 85°E as a consequence of an effusive-explosive submarine volcanic eruption. The data of a seismic network deployed on ice floes were used to locate hundreds of local earthquakes down to ∼25 km depth and to build a seismic tomography model under the volcanic area. Here we show the seismicity and the distribution of seismic velocities together with the 3D magmatic-thermomechanical numerical model, which demonstrate how a magma reservoir under the Gakkel Ridge may form, rise and trigger volcanic eruptions in the rift valley. The ultraslow spreading rates with low mantle potential temperatures appear to be a critical factor in the production of volatile-rich, low-degree mantle melts that are focused toward the magma reservoirs within narrow magmatic sections. The degassing of these melts is the main cause of the explosive submarine eruptions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer Science and Business Media LLC
    In:  EPIC3Nature Communications, Springer Science and Business Media LLC, 14(1), pp. 968-968, ISSN: 2041-1723
    Publication Date: 2023-06-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...