GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-26
    Description: Cosmic‐ray neutron sensors (CRNS) enable noninvasive determination of field‐scale soil moisture content by exploiting the dependence of the intensity of aboveground epithermal neutrons on the hydrogen contained in soil moisture. However, there are other hydrogen pools besides soil moisture (e.g., biomass). Therefore, these hydrogen pools should be considered for accurate soil moisture content measurements, especially when they are changing dynamically (e.g., arable crops, deforestation, and reforestation). In this study, we test four approaches for the correction of biomass effects on soil moisture content measurements with CRNS using experiments with three crops (sugar beet, winter wheat, and maize) based on high‐quality reference soil moisture: (a) site‐specific functions based on in‐situ measured biomass, (b) a generic approach, (c) the thermal‐to‐epithermal neutron ratio (Nr), and (d) the thermal neutron intensity. Bare soil calibration of the CRNS resulted in high root mean square errors (RMSEs) of 0.097, 0.041, and 0.019 m³/m³ between estimated and reference soil moisture content for sugar beet, winter wheat, and maize, respectively. Considering in‐situ measured biomass for correction reduced the RMSE to 0.015, 0.018, and 0.009 m³/m³. The consideration of thermal neutron intensity for correction was similarly accurate. We also explored the use of CRNS for biomass estimation and found that Nr only provided accurate biomass estimates for sugar beet. In contrast, we found significant site‐specific relationships between biomass and thermal neutron intensity for all three crops, suggesting that thermal neutron intensity can be used both to improve CRNS‐based soil moisture content measurements and to quantify crop biomass.
    Description: Plain Language Summary: Water availability is a key challenge in agriculture, especially given the expected increase of droughts related to climate change. A promising noninvasive technique to monitor soil moisture content is cosmic‐ray neutron sensing (CRNS), which is based on the negative correlation between the number of near‐surface fast neutrons originating from cosmic radiation and the amount of hydrogen stored as soil moisture. However, hydrogen is also stored in other pools, such as biomass. These additional pools of hydrogen must be considered to accurately determine soil moisture content with CRNS. In this study, we used data from three experiments with different crops for comparing four methods for the correction of biomass effects on the measurement of soil moisture content with CRNS. We found that soil moisture content measurements were most accurate when locally measured biomass was considered for correction. We also found that changes in the amount of biomass of different crops can be quantified using thermal neutrons additionally detected by CRNS, that is, neutrons from cosmic rays that have a lower energy than fast neutrons. A correction of biomass effects using thermal neutron measurements also provided accurate soil moisture content measurements.
    Description: Key Points: Cosmic ray soil moisture measurements were most accurate when corrected with in‐situ biomass measurements or thermal neutron intensity. The effect of biomass on epithermal and thermal neutron intensity is plant‐specific. Biomass could be estimated from thermal neutron intensity for three crops, but not with the thermal‐to‐epithermal neutron ratio.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: EU‐FP7
    Description: https://doi.org/10.34731/qb7h-6287
    Keywords: ddc:631.4 ; soil moisture ; cosmic ray neutron sensing ; biomass influence ; biomass estimation ; thermal neutrons
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-04
    Description: In their study, Dong and Ochsner (2018, https://doi.org/10.1002/2017WR021692) used an extensive data set of 18 cosmic‐ray neutron rover surveys along a 150 km long transect on unpaved roads to assess the influence of precipitation and soil texture on mesoscale soil moisture patterns. Based on their analysis, they concluded that soil texture, represented by sand content, exerted a stronger influence on mesoscale soil moisture variability than precipitation, represented by the antecedent precipitation index, on 17 of the 18 survey days. However, we found that Dong and Ochsner (2018) made a mistake in their calculation of volumetric soil moisture. After correction, the validity of the original conclusions of Dong and Ochsner (2018) was considerably weakened, as soil texture exerted a stronger influence on soil moisture than precipitation on 12 of the 18 survey days only.
    Description: Key Points: Dong and Ochsner (2018) concluded that soil texture exerted a stronger influence on mesoscale soil moisture variability than precipitation. Dong and Ochsner (2018) made a mistake in their calculation of volumetric soil moisture. We found that correlations between soil moisture and soil texture and precipitation were significantly different in only 8 of 18 surveys.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: 631.4 ; Cosmic‐Ray Neutron (CRN) Sensing ; CRN Rover ; mesoscale soil moisture ; soil moisture patterns
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-10
    Description: Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while conventional sensors typically suffer from small spatial support. With a sensor footprint up to several hectares, cosmic-ray neutron sensing (CRNS) is a modern technology to address that challenge. So far, the CRNS method has typically been applied with single sensors or in sparse national-scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-Alpine Rott headwater catchment in Southern Germany, which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, this network was designed to study root-zone soil moisture dynamics at the catchment scale. The observations of the dense CRNS network were complemented by extensive measurements that allow users to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from unmanned areal systems (UASs), permanent and temporary wireless sensor networks, profile probes, and comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments. As a result, we provide a unique and comprehensive data set to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatiotemporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land–atmosphere exchange processes. The data set is available through the EUDAT Collaborative Data Infrastructure and is split into two subsets: https://doi.org/10.23728/b2share.282675586fb94f44ab2fd09da0856883 (Fersch et al., 2020a) and https://doi.org/10.23728/b2share.bd89f066c26a4507ad654e994153358b (Fersch et al., 2020b).
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-14
    Description: The advance of the cosmic ray neutron (CRN) sensing method for estimating field scale soil moisture relied largely on simulations of the footprint properties of epithermal neutrons (∼0.5 eV–100 keV). Commercially available CRN probes are usually additionally equipped with a thermal neutron (〈0.5 eV) detector. The potential of these measurements is rarely explored because relevant features of thermal neutrons, such as the footprint and the sensitivity to soil moisture are unknown. Here, we used neutron transport modeling and a river crossing experiment to assess the thermal neutron footprint. We found that the horizontal thermal neutron footprint ranges between 43 and 48 m distance from the probe and that the vertical footprint extends to soil depths between 10 and 65 cm depending on soil moisture. Furthermore, we derived weighting functions that quantify the footprint characteristics of thermal neutrons. These results will enable new applications of thermal neutrons.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-09
    Description: Cosmic-ray neutron sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of metres and a depth of decimetres. Recent studies proposed operating CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation) and features a topographically distinct catchment boundary. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published data set (available at https://doi.org/10.23728/b2share.756ca0485800474e9dc7f5949c63b872; Heistermann et al., 2022) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land–atmosphere exchange as well as hydrological and hydrogeological processes at the hillslope and the catchment scale; and to support the retrieval of soil water content from airborne and spaceborne remote sensing platforms.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-31
    Description: Climate change increases the occurrence and severity of droughts due to increasing temperatures, altered circulation patterns, and reduced snow occurrence. While Europe has suffered from drought events in the last decade unlike ever seen since the beginning of weather recordings, harmonized long-term datasets across the continent are needed to monitor change and support predictions. Here we present soil moisture data from 66 cosmic-ray neutron sensors (CRNSs) in Europe (COSMOS-Europe for short) covering recent drought events. The CRNS sites are distributed across Europe and cover all major land use types and climate zones in Europe. The raw neutron count data from the CRNS stations were provided by 24 research institutions and processed using state-of-the-art methods. The harmonized processing included correction of the raw neutron counts and a harmonized methodology for the conversion into soil moisture based on available in situ information. In addition,the uncertainty estimate is provided with the dataset, information that is particularly useful for remote sensing and modeling applications. This paper presents the current spatiotemporal coverage of CRNS stations in Europe and describes the protocols for data processing from raw measurements to consistent soil moisture products. The data of the presented COSMOS-Europe network open up a manifold of potential applications for environmental research, such as remote sensing data validation, trend analysis, or model assimilation. The dataset could be of particular importance for the analysis of extreme climatic events at the continental scale. Due its timely relevance in the scope of climate change in the recent years, we demonstrate this potential application with a brief analysis on the spatiotemporal soil moisture variability. The dataset, entitled “Dataset of COSMOS-Europe:A European network of Cosmic-Ray Neutron Soil Moisture Sensors”, is shared via Forschungszentrum Jülich: https://doi.org/10.34731/x9s3-kr48 (Bogena and Ney, 2021).
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-07-31
    Description: Dataset accompanying the publication "Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with (airborne) roving and hydrogravimetry" (ESSD, https://doi.org/10.5194/essd-2021-445) The publication contains records of cosmic ray neutron sensing (CRNS - stationary, roving, airborne roving), soil moisture (SoilNet, FDR, profile probes, gravimetric), hydro-gravimetry, soil properties (bulk density), vegetation / biomass surveys. An overview of the dataset as well as further technical details are provided in the README.pdf file.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...