GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Publication Date: 2020-02-12
    Description: The large-scale POLONAISE'97 seismic experiment investigated the velocity structure of the crust and upper mantle in the Trans-European suture zone (TESZ) region between the Precambrian east European craton (EEC) and Paleozoic platform that comprises terranes added during the Caledonian and Variscan orogenies (530–370 and 370–225 Ma, respectively). This experiment included 64 shots recorded by 613 seismic stations during two deployments. Very good quality data were recorded along five profiles, and the longest and most important one (P4) is the focus of this paper. Clear first arrivals and later phases of waves reflected/refracted in the crust and Moho were interpreted using two-dimensional (2-D) tomographic inversion and ray-tracing techniques. The crustal thickness along the profile varies from 30–35 km in the Paleozoic platform area to ∼40 km below and due northeast of the TESZ, to ∼43 km in the Polish part of the EEC, and to ∼50 km in Lithuania. The Paleozoic platform and EEC are divided by the Polish basin, so the upper crustal structure varies considerably. In the area of the Polish basin, the P wave velocity is very low (V P 〈 6.1 km/s) down to depths of 15–20 km, indicating that a very thick sedimentary sequence is present. We suggest two possible tectonic interpretations of the velocity models: (1) Baltica indented Avalonia, obducting its upper crust and underthrusting its lower crust in a tectonic flake structure and (2) a rifted margin of Baltica underlies the Polish basin. This model is similar to other interpretations of seismic profiles recorded in the Baltic Sea. The second model implies that the Paleozoic platform solely consists of Avalonian lithosphere and the EEC of Baltica lithosphere. It offers a simple explanation of the difference in crustal thickness of the two platforms. It also implies that the Caledonian and Variscan orogenies in this area were relatively “soft” collisions that left this continental margin largely intact.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: The EUROBRIDGE deep seismic sounding (DSS) profile is a key component of a EUROPROBE project to examine Palaeoproterozoic processes of continental collision and crustal accretion. Its purpose is to establish the deep lithospheric structure of the East European Craton between the exposed Proterozoic and Archaean complexes of the Baltic and Ukrainian Shields. In 1994 a DSS experiment was recorded across the Baltic Sea from Västervik (Sweden) to Shventoji (Lithuania). We report on EUROBRIDGE'95, the first onshore stage of the seismic profile. It is 280km long, recorded from NW to SE on the Lithuanian part of the East European Platform, traversing the Proterozoic West Lithuanian Granulite Domain (WLG) and East Lithuanian Belt (EL) terranes. Explosive shots of up to 1000kg TNT were detonated at 10 shotpoints (SP01-SP10) at intervals of about 30km. Arrivals were recorded at 76 3-component seismograph stations with an average station spacing of 3.5km, providing high quality records. A 11th shot of 3000kg (SP00) was fired in the Baltic Sea close to Gotland. Raytracing analysis of refracted and reflected P-waves has been used to determine a 2-dimensional seismic velocity model for the crust and uppermost mantle below EUROBRIDGE'95. The thickness of the Phanerozoic sedimentary cover decreases from 2.2km in the north-west near the Baltic Sea coast to 0.4km at the south-east end of the profile near the Lithuania/Belarus border. Crust in the north-west and central part of profile consists of two major layers with a thickness of about 44km, increasing to 50km and three layers in the south-east. Crystalline upper crust is about 20km thick, thinning in the south-east, with P-wave velocities of 6.0-6.3km/s. A very weak low velocity zone, with a velocity contrast of 0.1-0.2km/s, occurs at 8-13km depth below the north-west and central part of the profile only. Lower crust exhibits velocities of commonly 6.5-6.9km/s, and thickens to the south-east with P-wave velocities up to 7.0km/s in the deepest parts. Crystalline crust is characterised by low velocity gradients and small velocity contrasts at most seismic boundaries. Major lateral changes in crustal velocity structure at all depths can be spatially correlated with the WLG-EL boundary determined from near surface geological information. Very strong reflections from the Moho boundary are observed. The mantle P-wave velocity immediately below the crust is 8.2-8.35km/s. A reflector in the lower lithosphere at a depth of almost 70km was found below Lithuania. Reflectivity modelling of the Gotland shot data suggests that this interface is absent offshore, where mantle velocities are lower. The DSS model supports the interpretation of the WLG and EL as terranes of Proterozoic age forming part of Fennoscandia. Later modification of crustal structure may have occurred, possibly by a mantle-heating episode centred on the Baltic Sea area.
    Keywords: 550 - Earth sciences
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...