GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    facet.materialart.
    Unknown
    PERGAMON-ELSEVIER SCIENCE LTD
    In:  EPIC3Chemosphere, PERGAMON-ELSEVIER SCIENCE LTD, ISSN: 0045-6535
    Publication Date: 2019-07-16
    Description: Fish gills are target organs for waterborne metal ions and this work aimed to investigate the effects of waterborne Ni2+ (10, 25 and 50 mg L−1) on goldfish gills. A special focus was on the relationship between Ni uptake and the homeostasis of reactive oxygen species (ROS) in the gills, the tissue, in direct contact with the metal pollutant. Ni-accumulation in the gills occurred as a function of exposure concentrations (R2 = 0.98). The main indices of oxidative stress, namely carbonyl proteins (CP) and lipid peroxides (LOOH), decreased by 21-33% and 21-24%, as well as the activities of principal antioxidant enzymes superoxide dismutase and glutathione-dependent peroxidase, by 29-47% and 41-46%, respectively, in gills of Ni-exposed fish. One of the main players in the antioxidant defense of gills seems to be catalase, which increased by 23-53% in Ni-treated fish, and low molecular mass thiol-containing compounds (L-SH), exceeding untreated controls by 73-105% after fish exposure to 10-50 mg L−1 of Ni2+. The increased level of L-SH, mainly represented by reduced glutathione, was supported by enhanced activities of glutathione reductase (by 27-38%), glutathione-S-transferase (56-141%) and glucose-6-phosphate dehydrogenase (by 96-117%) and demonstrates the ability of the antioxidant system of gills to resist Ni-induced oxidative stress.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Description: Toxic and carcinogenic effects of nickel compounds are suggested to result from nickel-mediated oxidative damage to macromolecules and/or inhibition of cellular antioxidant defenses. We investigated the effects of waterborne Ni2+ (10, 25 and 50 mg/L) on the blood and blood-producing tissues (kidney and spleen) of goldfish to identify relationships between Ni accumulation and oxidative stress. Whereas the main hematological parameters (total hemoglobin and hematocrit) were unaffected, Ni2+ exposure had substantial influence on goldfish immune system, causing lymphopenia. Ni accumulation increased renal iron content (by 49-78%) and resulted in elevated lipid peroxide (by 29%) and protein carbonyl content (by 274-278%), accompanied by suppression of the activities of superoxide dismutase (by 50-53%), glutathione peroxidase (15-45%), glutathione reductase (31-37%) and glucose-6-phosphate dehydrogenase (20-44%), indicating development of oxidative stress in kidney. In contrast to kidney, in spleen the activation of glutathione peroxidase (by 34-118%), glutathione-S-transferase (by 41-216%) and glutathione reductase (by 47%), as well as constant levels of low molecular mass thiols and metals together with enhanced activity of glucose-6-phosphate dehydrogenase (by 41-94%) speaks for a powerful antioxidant potential that counteracts Ni-induced ROS production. Further, as Ni accumulation in this organ was negligible, Ni-toxicity in spleen may be minimized by efficient exclusion of this otherwise toxic heavy metal.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...