GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 969-978 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The electromigration characteristics and kinetics of damage formation for Al(Cu,Si) line segments on a continuous W line and Al(Cu)/W two-level interconnect structures have been investigated. The mass transport as a function of temperature was measured using a drift-velocity technique. The flux divergence at the line/stud contact was found to be responsible for formation of open failure in the interconnect structure, as shown by a direct correlation observed between mass depletion at the contact and resistance increase of the line/stud chain. The depletion of Al at the stud contact is preceded by an incubation period during which Cu is swept out a threshold distance from the cathode of the line. This leads to a damage formation process which is controlled by both Cu electromigration along grain boundaries and dissolution of the Al2Cu precipitates. This is distinctly different from single-level interconnects measured using a conventional electromigration test site. Measurements of the mean failure lifetime in the two-level interconnect yield an activation energy of 0.58 eV for Al, in contrast to 0.78 and 0.83 eV for Al(0.5 wt % Cu) and Al(2 wt % Cu), respectively. The activation energies of the electromigration drift velocity were found to be 0.86 and 0.68 eV for Cu and Al in Al(2 wt % Cu, 3 wt % Si), respectively. These results enable one to infer that the kinetic process is controlled by electromigration of Cu along grain boundaries instead of by dissolution of the Al2Cu precipitates.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 72 (1992), S. 291-293 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is demonstrated that electromigration testing needs to be performed in structures that reflect use conditions, such as when there is a flux divergence as provided by the W stud-Al(Cu) interface rather than in a simple planar structure. The Al(Cu)/W interface has been investigated using both drift velocity and resistometric techniques with pure Al, Al(0.5 wt. % Cu) and Al(2 wt. % Cu) lines on W studs for interlevel connections. It is shown that the mass depletion can be correlated to the resistance change and electromigration failure in line/stud chains. A new effect is demonstrated in that a critical length of Al has to be depleted on Cu before the Al can migrate; when such migration starts the Al catches up with the Cu rich region, leading to slower motion and the production of extrusions which will also cause failures by shorting to adjacent lines.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 92 (2002), S. 1803-1810 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An in situ electromigration apparatus was used to study the kinetics of void growth in unpassivated, electropolated copper damascene lines. Voids were observed to grow by consuming grains in a stepwise fashion, either by grain thinning or by an edge displacement mechanism. Surface diffusion was found to be the primary diffusion path for void growth. In addition, grain boundaries provided a secondary path for copper diffusion in polycrystalline structures and nucleation sites for void growth in bamboo structures. Void growth rate was measured as a function of sample temperature and linewidth using a scanning electron microscope. An electromigration activation energy of 0.9±0.1 eV was determined for the copper voiding process. The effect of linewidth on void growth rate was also investigated and found to be negligible, consistent with a surface-diffusion dominated model for void growth. The in situ apparatus also made it possible to directly correlate changes in electrical resistance with physical changes taking place in the test structures. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 2516-2525 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We present a model which accounts for the dramatic evolution in the microstructure of electroplated copper thin films near room temperature. Microstructure evolution occurs during a transient period of hours following deposition, and includes an increase in grain size, changes in preferred crystallographic texture, and decreases in resistivity, hardness, and compressive stress. The model is based on grain boundary energy in the fine-grained as-deposited films providing the underlying energy density which drives abnormal grain growth. As the grain size increases from the as-deposited value of 0.05–0.1 μm up to several microns, the model predicts a decreasing grain boundary contribution to electron scattering which allows the resistivity to decrease by tens of a percent to near-bulk values, as is observed. Concurrently, as the volume of the dilute grain boundary regions decreases, the stress is shown to change in the tensile direction by tens of a mega pascal, consistent with the measured values. The small as-deposited grain size is shown to be consistent with grain boundary pinning by a fine dispersion of particles or other pinning sites. In addition, room temperature diffusion of the pinning species along copper grain boundaries is shown to be adequate to allow the onset of abnormal grain growth after an initial incubation time, with a transient time inversely proportional to film thickness. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Addition of endothelins (ETs) to neuroblastomaglioma hybrid cells (NG108-15) induced increases in cytosolic free Ca2+ ([Ca2+]i) levels of labeled inositol monophosphates and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. The increases in [Ca2+]i elicited by the three ETs (ET-1, ET-2, and ET-3) were transient and did not show a sustained phase. Chelating extracellular Ca2+ in the medium by adding excess EGTA decreased the ET-mediated Ca2+ response by 40-50%. This result indicates that a substantial portion of the increase in [Ca2+]i was due to influx from an extracellular source. However, the increase in [Ca2+]i was not affected by verapamil or nifedipine (10−5M). A rank order potency of ET-1 ET-2 ET-3 is shown for the stimulated increase in [Ca2+]i, as well as labeled inositol phosphates, in these cells. ATP (10−4M) and bradykinin (10−7M) also induced the increases in [Ca2+]i and Ins(1,4,5)P3 in NG108-15 cells, albeit to a different extent. When compared at 10−7M, bradykinin elicited a five- to sixfold higher increase in the level of Ins(1,4,5)P3, but less than a twofold higher increase in [Ca2+]i than those induced by ET-1. Additive increases in both Ins(1,4,5)P3 and [Ca2+]i were observed when ET-1, ATP, and bradykinin were added to the cells in different combinations, suggesting that each receptor agonist is responsible for the hydrolysis of a pool of polyphosphoinositide within the membrane. ET-1 exhibited homologous desensitization of the Ca2+ response, but partial heterologous desensitization to the Ca2+ response elicited by ATP. On the contrary, ET-1 did not desensitize the response elicited by bradykinin, although bradykinin exhibited complete heterologous desensitization to the response elicited by ET-1. Taken together, these results illustrate that, in NG108-15 cells, a considerable amount of receptor cross talk occurs between ET and other receptors that transmit signals through the polyphosphoinositide pathway.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 12 (1964), S. 421-423 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 93 (1971), S. 5520-5526 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A systematic study was performed of the microstructural and electromigration characteristics of Ti–Al(Cu)–Ti laminate structures fabricated from two metal wiring levels 1 μm in width. The total Cu content in the Al(Cu) core layers was varied from 0.5 to 2.0 wt %. A high degree of 〈111〉 texture was found for all Cu concentrations except for the 0.5 wt % film. Grain size statistics were found to be independent of the Cu concentration. The Al grains were supersaturated with Cu which led to shifts in resistance during low temperature baking and electromigration testing. The electromigration lifetime of stripes connected to large reservoirs of Cu and Al was found to be linearly dependent on the total Cu content, whereas there was a "roll off'' in the lifetime of two-level W stud structures as the Cu content was increased. The activation energy for electromigration induced failure was found to be 0.78–0.93 eV. Resistance shifts during electromigration and temperature only stressing and the microstructural characteristics of failed structures were explained in terms of the distribution of Cu in the Al matrix and the geometry of the structures using a blocking boundary model. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 4428-4437 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A high-resolution in situ SEM (scanning electron microscope) has been configured for real time comparison studies of the electromigration characteristics of Cu and Cu(Sn) alloys. Drift velocity test structures were fabricated and used to simulate the Cu line/W via structure in the multilevel interconnects. Electromigration comparison testings were carried out over a temperature range of 250 to 450 °C and current density of 5×105 to 2.1×106 A/cm2. Under these test conditions, the measured electromigration activation energy for Cu, Cu(0.5 wt %Sn), Cu(1.0 wt % Sn), and Cu(2 wt % Sn) are 0.73, 0.95, 1.25, and 1.14 eV, respectively. The measured critical length for Cu and Cu(Sn) alloys are (approximately-equal-to)2.5 μm at a current density of 2.1×106 A/cm2. The observed average drift velocity of Cu mass transport in Cu(Sn) alloys changes with the depletion of Sn atoms which were also found to move in the direction of electron current. Eventually, the Cu mass transport rate reaches a value comparable to that in pure copper test stripes. The measured resistivity values of the Cu(0.5 wt % Sn) and Cu(1 wt % Sn) using Van der Pauw test structures are 2.4 and 2.9 μΩ cm, respectively. In comparison with Cu and Al(Cu) device interconnects, Cu(Sn) alloys exhibits higher electromigration activation energy, good resistance to hillocks and void formation and comparable resistivity. These characteristics clearly indicate the fact that Cu(Sn) alloys are potentially good candidate for advanced device interconnect applications where high-current density and good electromigration resistance are required. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 953-961 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of oxide confinement on the thermal stress and yield behavior of passivated Al(Cu) line structures have been studied as a function of linewidth to submicron dimensions using a bending-beam technique. Principal stresses in the passivated line structures were deduced based on a micromechanical analysis of the curvatures of periodic line structures with lines oriented parallel and perpendicular to the beam direction. Results from the passivated Al(Cu) lines show that with decreasing linewidth, the magnitude of the principal stress components become higher until the line aspect ratio approaching one, then decreased. This behavior is consistent with theoretical predictions by analytical methods and finite element analyses. The stress behavior of the oxide passivation has also been deduced and its magnitude depended on the oxide morphology at the sidewall of the lines. Our result indicates a high level of stress in the sidewall which may cause crack formation during thermal cycling. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...