GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 9 (2003), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Although a significant amount of the organic C stored in soil resides in subsurface horizons, the dynamics of subsurface C stores are not well understood. The objective of this study was to determine if changes in soil moisture, temperature, and nutrient levels have similar effects on the mineralization of surface (0–25 cm) and subsurface (below 25 cm) C stores. Samples were collected from a 2 m deep unsaturated mollisol profile located near Santa Barbara, CA, USA. In a series of experiments, we measured the influence of nutrient additions (N and P), soil temperature (10–35°C), and soil water potential (−0.5 to −10 MPa) on the microbial mineralization of native soil organic C. Surface and subsurface soils were slightly different with respect to the effects of water potential on microbial CO2 production; C mineralization rates in surface soils were more affected by conditions of moderate drought than rates in subsurface soils. With respect to the effects of soil temperature and nutrient levels on C mineralization rates, subsurface horizons were significantly more sensitive to increases in temperature or nutrient availability than surface horizons. The mean Q10 value for C mineralization rates was 3.0 in surface horizons and 3.9 in subsurface horizons. The addition of either N or P had negligible effects on microbial CO2 production in surface soil layers; in the subsurface horizons, the addition of either N or P increased CO2 production by up to 450% relative to the control. The results of these experiments suggest that alterations of the soil environment may have different effects on CO2 production through the profile and that the mineralization of subsurface C stores may be particularly susceptible to increases in temperature or nutrient inputs to soil.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 143-151 
    ISSN: 1572-9729
    Keywords: matric potential ; Pseudomonas putida ; toluene ; water potential ; water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We quantified the effects of matric and solute waterpotential on toluene biodegradation by Pseudomonasputida mt-2, a bacterial strain originally isolated fromsoil. Across the matric potential range of 0 to – 1.5 MPa,growth rates were maximal for P. putida at – 0.25MPa and further reductions in the matric potentialresulted in concomitant reductions in growth rates.Growth rates were constant over the solute potential range0 to – 1.0 MPa and lower at – 1.5 MPa. First ordertoluene depletion rate coefficients were highest at0.0 MPa as compared to other matric water potentialsdown to – 1.5 MPa. Solute potentials down to – 1.5 MPadid not affect first order toluene depletion ratecoefficients. Total yield (protein) and carbon utilizationefficiency were not affected by water potential, indicatingthat water potentials common to temperate soils were notsufficiently stressful to change cellular energyrequirements. We conclude that for P. putida: (1)slightly negative matric potentials facilitate faster growthrates on toluene but more negative water potentials resultin slower growth, (2) toluene utilization rate per cell massis highest without matric water stress and is unaffected bysolute potential, (3) growth efficiency did not differ acrossthe range of matric water potentials 0.0 to – 1.5 MPa.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 656-670 
    ISSN: 0006-3592
    Keywords: unsaturated biofilm ; diffusion ; substrate utilization kinetics ; matric water potential ; toluene ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Biofilms are frequently studied in the context of submerged or aquatic systems. However, much less is known about biofilms in unsaturated systems, despite their importance to such processes as food spoilage, terrestrial nutrient cycling, and biodegradation of environmental pollutants in soils. Using modeling and experimentation, we have described the biodegradation of toluene in unsaturated media by bacterial biofilms as a function of matric water potential, a dominant variable in unsaturated systems. We experimentally determined diffusion and kinetic parameters for Pseudomonas putida biofilms, then predicted biodegradation rates over a range of matric water potentials. For validation, we measured the rate of toluene depletion by intact biofilms and found the results to reasonably follow the model predictions. The diffusion coefficient for toluene through unsaturated P. putida biofilm averaged 1.3 × 107 cm2/s, which is approximately two orders of magnitude lower than toluene diffusivity in water. Our studies show that, at the scale of the microbial biofilm, the diffusion of toluene to biodegrading bacteria can limit the overall rate of biological toluene depletion in unsaturated systems. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 656-670, 1997.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...