GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ponnudurai, R., Heiden, S. E., Sayavedra, L., Hinzke, T., Kleiner, M., Hentschker, C., Felbeck, H., Sievert, S. M., Schlüter, R., Becher, D., Schweder, T., & Markert, S. Comparative proteomics of related symbiotic mussel species reveals high variability of host-symbiont interactions. ISME Journal, 14, (2019): 649–656, doi: 10.1038/s41396-019-0517-6.
    Description: Deep-sea Bathymodiolus mussels and their chemoautotrophic symbionts are well-studied representatives of mutualistic host–microbe associations. However, how host–symbiont interactions vary on the molecular level between related host and symbiont species remains unclear. Therefore, we compared the host and symbiont metaproteomes of Pacific B. thermophilus, hosting a thiotrophic symbiont, and Atlantic B. azoricus, containing two symbionts, a thiotroph and a methanotroph. We identified common strategies of metabolic support between hosts and symbionts, such as the oxidation of sulfide by the host, which provides a thiosulfate reservoir for the thiotrophic symbionts, and a cycling mechanism that could supply the host with symbiont-derived amino acids. However, expression levels of these processes differed substantially between both symbioses. Backed up by genomic comparisons, our results furthermore revealed an exceptionally large repertoire of attachment-related proteins in the B. thermophilus symbiont. These findings imply that host–microbe interactions can be quite variable, even between closely related systems.
    Description: Thanks to captain, crew, and pilots of the research vessels Atlantis (ROV Jason cruise AT26–10 in 2014) and Meteor (cruise M82–3 in 2010). We thank Jana Matulla, Sebastian Grund, and Annette Meuche for excellent technical assistance during sample preparation, MS measurements in the Orbitrap Classic, and TEM imaging preparation, respectively. We appreciate Nikolaus Leisch’s help with TEM image interpretation, Inna Sokolova’s advice on bivalve physiology, and Marie Zühlke’s support during manuscript revision. RP was supported by the EU-funded Marie Curie Initial Training Network ‘Symbiomics’ (project no. 264774) and by a fellowship of the Institute of Marine Biotechnology e.V. TH was supported by the German Research Foundation DFG (grant MA 6346/2–1 to SM). The Atlantis cruise was funded by a grant of the US National Science Foundation’s Dimensions of Biodiversity program to SMS (OCE-1136727).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hinzke, T., Kleiner, M., Meister, M., Schlueter, R., Hentschker, C., Pane-Farre, J., Hildebrandt, P., Felbeck, H., Sievert, S. M., Bonn, F., Voelker, U., Becher, D., Schweder, T., & Markert, S. Bacterial symbiont subpopulations have different roles in a deep-sea symbiosis. Elife, 10, (2021): e58371, https://doi.org/10.7554/eLife.58371.
    Description: The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont subpopulations, we enriched symbionts according to cell size by density gradient centrifugation. Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells of different sizes represent metabolically dissimilar stages of a physiological differentiation process: While small symbionts actively divide and may establish cellular symbiont-host interaction, large symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication. Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic priorities. We propose that this division of labor between smaller and larger symbionts benefits the productivity of the symbiosis as a whole.
    Description: This work was supported by the German Research Foundation DFG (grant MA 6346/2–1 to SM), fellowships of the Institute of Marine Biotechnology Greifswald (TH, MM), a German Academic Exchange Service (DAAD) grant (TH), the NC State Chancellor’s Faculty Excellence Program Cluster on Microbiomes and Complex Microbial Communities (MK), the USDA National Institute of Food and Agriculture, Hatch project 1014212 (MK), the U.S. National Science Foundation (grants OCE-1131095 and OCE-1559198 to SMS), and The WHOI Investment in Science Fund (to SMS). We furthermore acknowledge support for article processing charges from the DFG (Grant 393148499) and the Open Access Publication Fund of the University of Greifswald.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...