GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: To identify Rhodobacter capsulatus nif genes necessary for the alternative nitrogenase, strains carrying defined mutations in 32 genes and open reading frames of nif region A, B or C were constructed. The ability of these mutants to grow on nitrogen-free medium with molybdenum (Nif phenotype) or in a nifHDK deletion background on medium without molybdenum (Anf phenotype) was tested. Nine nif genes and nif-associated coding regions are absolutely essential for the alternative nitrogenase. These genes comprise nifV and nifB, the nif-specific ntr system (nifR1, R2, R4) and four open reading frames, which exhibit no homology to known genes. In addition, a significantly reduced activity of both the alternative nitrogenase and the molybdenum-dependent nitrogenase was found for fdxN mutants. By random Tn5 mutagenesis of a nifHDK deletion strain 42 Anf− mutants were isolated. Southern hybridization experiments demonstrated that 17 of these Tn5 mutants were localized in at least 13 different restriction fragments outside of known nif regions. Ten different Anf− Tn5 mutations are clustered on a 6 kb DNA fragment of the chromosome designated anf region A. DNA sequence analysis revealed that this region contained the structural genes of the alternative nitrogenase (anfHDGK). The identification of several Tn5 insertions mapping outside of anf region A indicated that at least 10 genes specific for the alternative nitrogenase are present in R. capsulatus.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Nitrogen fixation ; Novel type of NifU ; Ethane formation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA sequence analysis of a 3494-bp HindIII-Bc1I fragment of the Rhodobacter capsulatus nif region A revealed genes that are homologous to ORF6, nifU, nifS, nifV and nifW from Azotobacter vinelandii and Klebsiella pneumoniae. R. capsulatus nifU, which is present in two copies, encodes a novel type of NifU protein. The deduced amino acid sequences of NifUI and NifUII share homology only with the C-terminal domain of NifU from A. vinelandii and K. pneurnoniae. In contrast to nifA andnifB which are almost perfectly duplicated, the predicted amino acid sequences of the two NifU proteins showed only 39% sequence identity. Expression of the ORF6-nifU ISVW operon, which is preceded by a putative σ54-dependent promoter, required the function of NifA and the nif-specific rpoN gene product encoded by nifR4. Analysis of defined insertion and deletion mutants demonstrated that only nifS was absolutely essential for nitrogen fixation in R. capsulatus. Strains carrying mutations in nifV were capable of very slow diazotrophic growth, whereas ORF6, nifU I and nifW mutants as well as a nifU I/nifUII, double mutant exhibited a Nif+ phenotype. Interestingly, R. capsulatus nifV mutants were able to reduce acetylene not only to ethylene but also to ethane under conditions preventing the expression of the alternative nitrogenase system. Homocitrate added to the growth medium repressed ethane formation and cured the NifV phenotype in R. capsulatus. Higher concentrations of homocitrate were necessary to complement the NifV phenotype of a polar nifV mutant (NifV−NifW−), indicating a possible role of NifW either in homocitrate transport or in the incorporation of this compound into the iron-molybdenum cofactor of nitrogenase.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1617-4623
    Keywords: Rhodobacter capsulatus rnf genes ; In vivo and in vitro nitrogenase activities ; Iron-sulphur proteins ; Ferredoxins ; Metronidazole
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA sequence analysis of a 12236 by fragment, which is located upstream of nifE in Rhodobacter capsulatus nif region A, revealed the presence of ten open reading frames. With the exception of fdxC and fdxN, which encode a plant-type and a bacterial-type ferredoxin, the deduced products of these coding regions exhibited no significant homology to known proteins. Analysis of defined insertion and deletion mutants demonstrated that six of these genes were required for nitrogen fixation. Therefore, we propose to call these genes rnfA, rnfB, rnfC, rnfD, rnfE and rnfF (for Rhodobacter nitrogen fixation). Secondary structure predictions suggested that the rnf genes encode four potential membrane proteins and two putative iron-sulphur proteins, which contain cysteine motifs (C-X2-C-X2-C-X3-C-P) typical for [4Fe-4S] proteins. Comparison of the in vivo and in vitro nitrogenase activities of fdxN and rnf mutants suggested that the products encoded by these genes are involved in electron transport to nitrogenase. In addition, these mutants were shown to contain significantly reduced amounts of nitrogenase. The hypothesis that this new class of nitrogen fixation genes encodes components of an electron transfer system to nitrogenase was corroborated by analysing the effect of metronidazole. Both the fdxN and rnf mutants had higher growth yields in the presence of metronidazole than the wild type, suggesting that these mutants contained lower amounts of reduced ferredoxins.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...