GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Years
  • 1
    Online Resource
    Online Resource
    New York, NY :Greenhaven Publishing LLC,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (106 pages)
    Edition: 1st ed.
    ISBN: 9781534563711
    Series Statement: Diseases and Disorders Series
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Foreword -- Introduction: What Is HPV? -- Chapter One: The Truth About HPV -- Chapter Two: Detecting HPV Infections -- Chapter Three: HPV Treatment Options -- Chapter Four: Genital Warts: Symptoms and Treatment Options -- Chapter Five: HPV-Related Cancers -- Chapter Six: The Emotional Impact of HPV -- Notes -- Glossary -- Organizations to Contact -- For More Information -- Index -- Picture Credits -- About the Author -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-10
    Description: This database reports the results of bulk rock geochemical measurements realized on 84 rock samples collected from Hole BT1B drilled during ICDP Oman Drilling Project (OmanDP, Kelemen et al. [2020]). 15 samples were collected on-site every 20m during the drilling operations (February-March 2017). 59 samples were selected by the shipboard science party as representative of the different lithologies recovered from Hole BT1B during the description of the cores, on board D/V Chikyu (August 2017). 10 additional listvenites and serpentinites were selected from Sections C5704B-73Z-1 to -75Z-2 (180.01-186.945mbg) for a coordinated on-shore study of the lower serpentinite intervals and neighboring listvenites (thereafter referred to as consortium samples). The purpose of the study was to obtain a high-density and high analytical quality bulk geochemical characterization along the 300.05 meters of continuous cores recovered from OmanDP Hole BT1B, through the transition from the variously carbonated peridotites at the base of the Semail ophiolite mantle section to the underlying metamorphic lithologies. 51 listvenites, 14 serpentinites, and 19 greenshists and greenstones were analyzed. The rock names and grouping by Units were determined on-board D/V Chikyu from macroscopic observations (Visual Core Description; Kelemen et al. [2020]). Major and trace element concentrations were measured by X-ray fluorescence (XRF). XRF analyses of shipboard and on-site samples noted * in the Method columns were realized on-board D/V Chikyu (Note that major oxide concentrations in Kelemen et al. [2020] are recalculated to 100 wt.%) and those noted † in the Method columns were realized at the University of St. Andrews (see Table BT1-T12 in Kelemen et al. [2020]). XRF analyses of consortium samples were realized at Geolabs. FeO concentrations were measured by titration at the University of Lausanne (Switzerland). Total H and C concentrations (noted TH and TC) were determined on-board D/V Chikyu by combustion CHNS elemental analysis (EA) and used to recalculate H2O and CO2 contents. Concentrations of carbon in Ca-carbonates (total inorganic carbon; noted TIC) were determined by coulometry. Trace element compositions were determined using a Quadrupole Inductively-Coupled-Plasma-Mass Spectrometer (Q-ICP-MS) at the University of Montpellier (France). All analyses were performed on samples prepared from non ignited rock-powders, except for XRF major element analyses realized on beads on-board D/V Chikyu. Concentrations are reported in wt.% (10-2g/g) and in ppm (10-6 g/g). Abbreviations: mbg: meters below ground (Chikyu curated depth); Fu-listvenite : fuchsite-bearing listvenite; LOI : Loss on ignition; XRF B : XRF analyses on beads; XRF P : XRF analyses on powder pellets; XRF B/P : XRF major element analyses on beads except for K measured on pellets and recalculated as volatile free; n.a.: not analysed; n.d.: not determined. (Notes, abbreviations & reference at the bottom of the file) ‡ Sample C5704B-60Z-4-1, 24.0--29.0 cm: Green matrix (Host: Sample C5704B-60Z-4-1, 24.0--29.0 cm - H) crosscut by pink vein (Vein : Sample C5704B-60Z-4-1, 24.0--29.0 cm - V) Reference : Kelemen, P. B., J. M. Matter, D. A. H. Teagle, J. A. Coggon, and the Oman Drilling Project Science Team (2020), Proceedings of the Oman Drilling Project, College Station, TX.
    Keywords: Aluminium oxide; Antimony; Arsenic; Barium; Caesium; Calcium number; Calcium oxide; Carbon, inorganic, total; Carbon, total; carbonated peridotite; Carbon dioxide; CDRILL; Cerium; Chromium; Chromium(III) oxide; Cobalt; Copper; Core drilling; Coulometry; DEPTH, sediment/rock; Dysprosium; Element analyser CHNS; Elements, total; Erbium; Europium; Fe-titration; Gadolinium; Gallium; Geochemistry; Hafnium; Holmium; Hydrogen, total; Iron 3+/Iron total; Iron oxide, Fe2O3; Iron oxide, FeO; Lanthanum; Lead; listvenites; Lithium; Loss on ignition; Lutetium; Magnesium number; Magnesium oxide; Manganese; Manganese oxide; metamorphic sole; Method comment; Neodymium; Nickel; Niobium; OmanDP_BT1B; Phosphorus pentoxide; Potassium oxide; Praseodymium; Quadrupole Inductively-Coupled-Plasma-Mass Spectrometer (Q-ICP-MS); Rock type; Rubidium; Samarium; Sample code/label; Sample method; Sampling; Scandium; Semail Ophiolite; Series; serpentinites; Silicon dioxide; Sodium oxide; Strontium; Tantalum; Terbium; Thorium; Thulium; Tin; Titanium; Titanium dioxide; trace element; Tungsten; Unit; Uranium; Vanadium; Wadi Mansah, Samail, Oman; Water in rock; X-ray fluorescence (XRF); Ytterbium; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 6672 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Serpentinized and metasomatized peridotites intruded by gabbros and dolerites have been drilled on the southern wall of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) during International Ocean Discovery Program (IODP) Expedition 357. They occur in seven holes from five sites making up an east-west trending, spreading-parallel profile that crosscuts this exhumed detachment footwall. Here we have taken advantage of this sampling to study heterogeneities of alteration at scales less than a kilometer. We combine textural and mineralogical observations made on 77 samples with in situ major and trace element analyses in primary and serpentine minerals to provide a conceptual model for the development of alteration heterogeneities at the Atlantis Massif. Textural sequences and mineralogical assemblages reveal a transition between an initial pervasive phase of serpentinization and subsequent serpentinization and metasomatism focused along localized pathways preferentially used by hydrothermal fluids. We propose that these localized pathways are interconnected and form 100 m- to 1 km-sized cells in the detachment footwall. This change in fluid pathway distribution is accompanied by variable trace element enrichments in the serpentine textures: deep, syn-serpentinization fluid-peridotite interactions are considered the source of Cu, Zn, As, and Sb enrichments, whereas U and Sr enrichments are interpreted as markers of later, shallower fluid-serpentinized peridotite interaction. Alteration of gabbros and dolerites emplaced in the peridotite at different lithospheric levels leads to the development of amphibole, chlorite and, or, talc-bearing textures as well as enrichments in LREE, Nb, Y, Th, Ta in the serpentine textures of the surrounding peridotites. Combining these observations, we propose a model that places the drill holes in a conceptual frame involving mafic intrusions in the peridotites and heterogeneities during progressive alteration and emplacement on the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Highlights • Seabed rock drills and real-time fluid monitoring for first time in ocean drilling • First time recovery of continuous sequences along oceanic detachment fault zone • Highly heterogeneous rock type and alteration in shallow detachment fault zone • High methane and hydrogen concentrations in Atlantis Massif shallow basement • Oceanic serpentinites potentially provide important niches for microbial life Abstract IODP Expedition 357 used two seabed drills to core 17 shallow holes at 9 sites across Atlantis Massif ocean core complex (Mid-Atlantic Ridge 30°N). The goals of this expedition were to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration in one borehole. The cores show highly heterogeneous rock types and alteration associated with changes in bulk rock chemistry that reflect multiple phases of magmatism, fluid-rock interaction and mass transfer within the detachment fault zone. Recovered ultramafic rocks are dominated by pervasively serpentinized harzburgite with intervals of serpentinized dunite and minor pyroxenite veins; gabbroic rocks occur as melt impregnations and veins. Dolerite intrusions and basaltic rocks represent the latest magmatic activity. The proportion of mafic rocks is volumetrically less than the amount of mafic rocks recovered previously by drilling the central dome of Atlantis Massif at IODP Site U1309. This suggests a different mode of melt accumulation in the mantle peridotites at the ridge-transform intersection and/or a tectonic transposition of rock types within a complex detachment fault zone. The cores revealed a high degree of serpentinization and metasomatic alteration dominated by talc-amphibole-chlorite overprinting. Metasomatism is most prevalent at contacts between ultramafic and mafic domains (gabbroic and/or doleritic intrusions) and points to channeled fluid flow and silica mobility during exhumation along the detachment fault. The presence of the mafic lenses within the serpentinites and their alteration to mechanically weak talc, serpentine and chlorite may also be critical in the development of the detachment fault zone and may aid in continued unroofing of the upper mantle peridotite/gabbro sequences. New technologies were also developed for the seabed drills to enable biogeochemical and microbiological characterization of the environment. An in situ sensor package and water sampling system recorded real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential (Eh), and temperature and during drilling and sampled bottom water after drilling. Systematic excursions in these parameters together with elevated hydrogen and methane concentrations in post-drilling fluids provide evidence for active serpentinization at all sites. In addition, chemical tracers were delivered into the drilling fluids for contamination testing, and a borehole plug system was successfully deployed at some sites for future fluid sampling. A major achievement of IODP Expedition 357 was to obtain microbiological samples along a west–east profile, which will provide a better understanding of how microbial communities evolve as ultramafic and mafic rocks are altered and emplaced on the seafloor. Strict sampling handling protocols allowed for very low limits of microbial cell detection, and our results show that the Atlantis Massif subsurface contains a relatively low density of microbial life.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-01
    Description: One of the most ubiquitous boundaries within our planet is between sheeted dikes and gabbros in fast-spreading ocean crust. This boundary marks the brittle-ductile transition at the ridge crest, and is localized by a decametric conductive boundary layer between hydrothermal circulation in the sheeted dike layer and a shallow quasi-steady-state melt lens. In contrast, at slow-spreading ridges, the crustal structure appears chaotic, with no consistent sheeted dike layer and widespread occurrences of gabbro and serpentinized peridotite on the seafloor. Recent work suggests that as much as 50% of the Atlantic Ocean crust formed by a detachment mode of seafloor spreading, including the formation of oceanic core complexes capped by long-lived, convex-upward detachment faults. These detachment faults are often associated with large hydrothermal systems in which the location of any magmatic heat source is uncertain. Here we show that detachment faults can act as thermal boundaries between gabbroic melt in the fault footwall and hydrothermal circulation in the fault zone and hanging wall, thus explaining the link between faulting and black smoker systems. We suggest that interaction between magmatism and hydrothermal circulation means that detachment faults can act as the dike-gabbro transition in the detachment mode of spreading, inevitably leading to exposure of gabbros on the seafloor through continued faulting. This concept provides a means of unifying apparently contrasting processes and crustal structures at different spreading rates.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...