GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Members of two genera of Gram-negative bacteria, Serratia and Erwinia, produce a β-lactam antibiotic, 1-carbapen-2-em-3-carboxylic acid. We have reported previously the cloning and sequencing of the genes responsible for production of this carbapenem in Erwinia carotovora. These genes are organized as an operon, carA–H, and are controlled by a LuxR-type transcriptional activator, encoded by the linked carR gene. We report in this paper the genetic dissection of this putative operon to determine the function of each of the genes. We demonstrate by mutational analysis that the products of the first five genes of the operon are involved in the synthesis of the carbapenem molecule. Three of these, carABC, are absolutely required. In addition, we provide evidence for the existence of a novel carbapenem resistance mechanism, encoded by the carF and carG genes. Both products of these overlapping and potentially translationally coupled genes have functional, N-terminal signal peptides. Removal of these genes from the Erwinia chromosome results in a carbapenem-sensitive phenotype. We assume that these novel β-lactam resistance genes have evolved in concert with the biosynthetic genes to ensure ‘self-resistance’ in the Erwinia carbapenem producer.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The c. 110kDa haemolysin toxin secreted by Escherichia coli and other pathogenic Gram-negative bacteria is synthesized as the non-toxic precursor, prohaemolysin (proHlyA), which is unable to target mammalian cell membranes until activated intracellularly by an unknown mechanism dependent upon the coexpressed c. 20kDa protein, HlyC. We have established in vitro post-translational activation of proHlyA in membrane-depleted cell extract fractions from E. coli recombinant strains containing (separately) the proHlyA and HlyC proteins. In vitro activation was calcium-independent and effective over a pH range of 6 to 9 and at temperatures from 42°C to 4°C. HlyC cell extract was also able to activate proHlyA which had been secreted out of cells containing the export proteins HlyB and HlyD. Fractionation of HlyC cell extracts by sucrose gradient centrifugation and molecular weight chromatography revealed activating fractions as having a molecular mass of 40kDa, suggesting that the HlyC activator is present physiologically in a multimeric form. Cell extracts containing activation-competent HlyC and proHlyA were inactive following dialysis, but activity was restored by complementation with a cell extract lacking both proteins. HlyC and proHlyA proteins which were overproduced separately from recombinant expression plasmids were inactive following purification, but activity could again be restored with a Hly-negative cell extract. These experiments demonstrated that HlyC is not sufficient for activation; an additional cellular factor is required. The cellular factor was found in enterobacteria but not other bacteria or eukaryotic cells. It was cytosolic, protease-sensitive, and behaved as a c. 10kDa polypeptide in a number of assays including dialysis, sucrose gradient centrifugation, and gel filtration chromatography. Thus activation was possible in a defined in vitro reaction containing only purified proHlyA, HlyC, and the cellular factor. Ki stic studies in which the relative concentrations of the three components of proHlyA activation were varied suggested that neither HlyC nor the cellular factor acts as a conventional enzyme, with each participating in a finite number of activation events.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...