GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Orogeny Congresses ; Plate tectonics Congresses ; Plate tectonics ; Earth (Planet) Congresses Crust ; Konferenzschrift ; Geodynamik ; Tektonik ; Metamorphose ; Subduktion ; Gestein ; Kreislauf ; Einschmelzung ; Magmatismus ; Lithosphäre ; Orogenese ; Plattentektonik ; Kontinentale Erdkruste
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (408 Seiten)
    ISBN: 1862390800
    Series Statement: Geological Society special publication 184
    DDC: 551.1/3
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Faults (Geology) ; Fault zones ; Shear zones (Geology) ; Shear flow ; Rock deformation ; Aufsatzsammlung ; Störung ; Scherung ; Scherfläche ; Störungstektonik ; Strukturgeologie ; Störung ; Scherung ; Deformation ; Rheologie ; Fluid-Fels-System ; Scherzone ; Verwerfung ; Deformation
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (VI, 379 Seiten)
    ISBN: 186239153X
    Series Statement: Geological Society special publication 224
    DDC: 551.872
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 92 (1990), S. 7610-7617 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Using real-time wave packet propagation we consider the effects of lattice recoil, inelasticity and surface temperature in strongly activated dissociation reactions of diatomic molecules at surfaces. The energy diagram governing the dissociation, modeled as suggested by electronic structure calculations for H2 dissociation at Cu surfaces, consisted of an entrance channel barrier separated from the chemisorption region by a ridge, where dissociation takes place. Lattice recoil is simulated by coupling this "stiff-barrier'' PES to a harmonic oscillator. Calculations were carried out for masses and potential parameters appropriate to H2/D2 dissociation on Cu and N2 dissociation on Fe. Barrier recoil was found to suppress the dissociation probability as compared with its stiff-barrier value. The effect, marginal for H2 and D2 but pronounced in the case of N2, can be understood in terms of dynamical increases in the barrier width and height. Simulations where the N2–Fe barrier was excited in the initial state showed that the influence of surface temperature on the dissociation can be quite dramatic and led to a strong enhancement in the tunneling region.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 91 (1989), S. 7209-7219 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present calculations for the dissociative adsorption of hydrogen molecules on a Cu surface as a function of initial translational energy and vibrational quantum state. Classical, semiclassical, and fully quantum calculations are performed and the results compared. The potential energy surface was based upon a total energy calculation for H2 on a small Cu cluster and has been previously employed in dynamical simulations. Our results show that for low primary beam energies, dissociation occurs primarily via tunneling through the activation barrier in the vibrational coordinate. Populating the initial vibrational states is shown to enhance reactivity, but not simply by a total energy shift. By changing the hydrogen isotope it is shown that tunneling effects can persist up to quite high molecular masses. This occurs because the activation barrier lies in the vibrational coordinate, where the reduced mass of the molecule determines the dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Journal of metamorphic geology 20 (2002), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Porphyroblastic schists in the thermal aureole of the Victor Harbor Granite at Petrel Cove, in the southern Adelaide Fold Belt, South Australia, preserve a record of sequential cordierite, andalusite, staurolite, fibrolite, chlorite and muscovite growth (along with biotite+plagioclase+quartz+ilmenite) during progressive deformation. A P–T pseudo-section appropriate to biotite-saturated assemblages in KFMASH shows that the sequence of mineral reactions records increasing pressure of at least 1 kbar (from c. 3 to c. 4 kbar) during cooling from around 580 °C. Heating at pressures below c. 3 kbar is inferred for growth of early formed cordierite porphyroblasts, and is attributed in part to the thermal effects of granite emplacement, while the pressure increase is attributed to tectonic burial accruing from ongoing deformation. The ‘anticlockwise’P–T path is consistent with convergent deformation being focussed as a consequence of heating, as to be expected for a lithospheric rheology that is strongly temperature dependent.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 12 (1994), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Grandite garnet-rich calcsilicate rocks from the Lower Calcsilicate Unit of the regionally metamorphosed Reynolds Range Group (central Australia) crop out along a strike-parallel section in which a transition zone from M22 amphibolite to granulite facies rocks is exposed. Across this transition the grandite-rich layers do not show systematic changes in mineral assemblages, compositions and modes, or stable isotope compositions. These layers are deformed by F22 folds that are associated with the peak of regional low-pressure/high-temperature metamorphism. Therefore, the grandite-rich layers appear to pre-date regional metamorphism and to have acted as closed chemical systems during prograde M22 metamorphism.Mineral assemblages in the grandite-rich layers are consistent with their formation through the infiltration of oxidized, water-rich fluids (Xco2 〈 0.1–0.3; log fo2 -16 to -14). The stable isotope values of calcite (Δ13C=-4.2 to -0.8%0 PDB; Δ18O = 10.5–14.0%0 V-SMOW) and bulk-silicate fractions (Δ18O = 6.1 to 10.8%) of the grandite-rich layers are most consistent with the infiltrating fluid being from a magmatic source. It is most likely that fluid infiltration occurred during the pre-M22 contact metamorphism (M21) that affected much of the Reynolds Range Group. The preservation of these assemblages is probably due to their high variance and little pervasive fluid-rock interaction having occurred during M22.The clinopyroxene- and feldspar-rich calcsilicate rocks that host the grandite-rich layers contain poikiloblastic grandite garnet that formed during prograde M22 metamorphism. Thin marbles that locally occur with the grandite-rich layers contain a third garnet generation that is post- or late M22. This grossular-rich garnet occurs in coronas around calcite, plagioclase, clinopyroxene, wollastonite and scapolite. These coronas are consistent with cooling and/or compression. However, because the marble assemblages are themselves overprinted by M21 grandite-rich layers the development of coronal garnet does not reflect a continuous P-T-t path. Rather, it more probably reflects the partial re-equilibration of M21 contact metamorphic assemblages to post-M22 conditions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 12 (1994), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Granulite facies metasedimentary gneiss exposed on Jetty Peninsula, east Antarctica, contains assemblages involving garnet-sillimanite-biotite-cordierite-spinel-ilmenite-rutile and garnet-orthopyroxene-cordierite-biotite, as well as quartz and K-feldspar. Peak assemblages involve garnet + sillimanite + ilmenite (±rutile) and garnet + orthopyroxene. P-T calculations suggest formation conditions of approximately 800d̀ C at 7-7.5 kbar. Cooling from peak conditions is suggested by biotite + garnet (±sillimanite) overprinting some peak assemblages. A subsequent increase in temperature is inferred from the formation of cordierite + garnet + biotite + ilmenite, garnet + sillimanite + cordierite + ilmenite and cordierite + orthopyroxene assemblages during D2. In slightly zincian bulk compositions, hercynitic spinel + cordierite + sillimanite constitutes the peak D2 assemblage. Average pressure calculations indicate peak pressures of 5.9 ±0.4 kbar at 700d̀ C for the cordierite-bearing D2 assemblages. Available radiometric data suggest that peak metamorphism occurred at c. 1000 Ma and D2 occurred after 940 ± 20 Ma. The following two possibilities exist for the metamorphic evolution. (1) The formation of the lower pressure cordierite-bearing assemblages is associated with a separate metamorphic event (M2), unrelated to the peak assemblage (M1), and the lower pressure assemblages have no relevance in terms of a single tectonothermal event. (2) The cordierite-bearing assemblages formed during a progression from peak conditions. In this case, the lower pressure assemblages reflect a broadly decompressional metamorphic evolution, during which temperatures fluctuated. Comparison with P-T paths from granulites of similar age in adjacent areas suggests that the second possibility should be preferred. The cooling interval between peak conditions and the development of cordierite-bearing coronas and symplectites suggests affinities with isobarically cooled granulites of similar age immediately to the west, and the low-P/high-T post-peak conditions are similar to the later stages of decompressional paths recognized in much of east Antarctica.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 9 (1991), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract The Proterozoic low-pressure, high-temperature (LPHT) terrane of the Reynolds Range occurs in a 130-km-long, NW-trending belt in the central part of the Arunta Block, central Australia. The Reynolds Range has been affected by two mid-Proterozoic tectonic cycles, DI and DII, associated with two metamorphic events, MI and MII. DI–MI effects are restricted to the older of two sedimentary successions, the Lander Rock beds, which are separated from the younger Reynolds Range Group by an angular unconformity. The dominant structural–metamorphic features formed during DII–MII affected both sedimentary successions and the various granites that intruded them, and reworked most DI–MI effects. The DII deformation history can be subdivided into one prograde, two peak, and one retrograde stage. Average P–T calculations in the southeastern half of the range indicate a peak-metamorphic pressure of 4.1 ± 0.3 kbar. Because the calculated values are derived from the same stratigraphic level corresponding to the base of the Reynolds Range Group, which is exposed throughout the area, it is likely that pressures were similar in the entire range. In fact, however, the peak-metamorphic temperature shows a dramatic increase from greenschist facies (c. 400° C) in the northwest to granulite facies (740 ± 60° C) in the southeast, indicating that MII was associated with anomalously high heat flows. The P–T path is anticlockwise, with isobaric cooling from the metamorphic peak indicated by corona textures. However, the evidence of a prograde increase in pressure is indirect and based on the compressional nature of the structures. Peak-metamorphic mineral assemblages and retrograde mineral assemblages in amphibolite facies shear zones show the same metamorphic zonation, suggesting they formed in response to the same thermal event. If this is true, the implication is that a thermal perturbation external to the crust was maintained for a considerable period of time (110 Ma, based on zircon dating). As it is not clear whether Proterozoic, asthenosphere-active, thermal perturbations operated for this long, the alternative interpretation must be considered, namely that the peak-metamorphic events are separate from the shear zone event associated with reheating of the area.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 9 (1991), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Three types of zircon occur in a complexly deformed and variably migmatized quartzofeldspathic gneiss from the Reynolds Range, central Australia. The oldest type is inherited from the granitic precursor of the gneiss, and is overgrown by a second group of zircon grains that formed during prograde, granulite facies metamorphism. Partial melting of the gneiss resulted in solution of both the inherited and metamorphic zircon. No new zircon growth accompanied crystallization of the partial melt, suggesting loss of zirconium–rich residual fluids. Hydrous, amphibolite facies retrogression of the gneiss and its migmatized variants during late shearing produced new, idiomorphic zircon in both the shear zone and its wall rocks.Important implications of this study are that (i) zircon has a tendency to dissolve if it comes into direct contact with a melt produced from anhydrous biotite breakdown in a quartzofeldspathic granulite, (ii) melt crystallization is not necessarily accompanied by zircon growth, and (iii) euhedral zircon can grow from a hydrous fluid phase under subsolidus, amphibolite facies conditions, e.g. within shear zones.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...