GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Publisher
Years
  • 1
    Publication Date: 2024-03-15
    Description: Diatoms, large bloom-forming marine microorganisms, build frustules out of silicate, which ballasts the cells and aids their export to the deep ocean. This unique physiology forges an important link between the marine silicon and carbon cycles. However, the effect of ocean acidification on the silicification of diatoms is unclear. Here we show that diatom silicification strongly diminishes with increased acidity in a natural Antarctic community. Analyses of single cells from within the community reveal that the effect of reduced pH on silicification differs among taxa, with several species having significantly reduced silica incorporation at CO2 levels equivalent to those projected for 2100. These findings suggest that, before the end of this century, ocean acidification may influence the carbon and silicon cycle by both altering the composition of the diatom assemblages and reducing cell ballasting, which will probably alter vertical flux of these elements to the deep ocean.
    Keywords: Abbreviation; Alkalinity, total; Antarctic; Aragonite saturation state; Bicarbonate ion; Biogenic silica; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell biovolume; Chlorophyll a; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Davis_Station_OA; Entire community; EXP; Experiment; Experiment day; Fragilariopsis curta; Fragilariopsis cylindrus; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Maximum photochemical quantum yield of photosystem II; Nitrate and Nitrite; Number of cells; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, reactive soluble; Polar; Primary production/Photosynthesis; Proboscia truncata; Proton concentration; Pseudonitzschia turgiduloides; Registration number of species; Replicate; Salinity; Silicate; Silicification; Species; Stellarima microtrias; Temperature, water; Thalassiosira antarctica; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 104844 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-15
    Description: High-latitude oceans have been identified as particularly vulnerable to ocean acidification if anthropogenic CO2 emissions continue. Marine microbes are an essential part of the marine food web and are a critical link in biogeochemical processes in the ocean, such as the cycling of nutrients and carbon. Despite this, the response of Antarctic marine microbial communities to ocean acidification is poorly understood. We investigated the effect of increasing fCO2 on the growth of heterotrophic nanoflagellates (HNFs), nano- and picophytoplankton, and prokaryotes (heterotrophic Bacteria and Archaea) in a natural coastal Antarctic marine microbial community from Prydz Bay, East Antarctica. At CO2 levels ≥634 µatm, HNF abundance was reduced, coinciding with increased abundance of picophytoplankton and prokaryotes. This increase in picophytoplankton and prokaryote abundance was likely due to a reduction in top-down control of grazing HNFs. Nanophytoplankton abundance was elevated in the 634 µatm treatment, suggesting that moderate increases in CO2 may stimulate growth. The taxonomic and morphological differences in CO2 tolerance we observed are likely to favour dominance of microbial communities by prokaryotes, nanophytoplankton, and picophytoplankton. Such changes in predator–prey interactions with ocean acidification could have a significant effect on the food web and biogeochemistry in the Southern Ocean, intensifying organic-matter recycling in surface waters; reducing vertical carbon flux; and reducing the quality, quantity, and availability of food for higher trophic levels.
    Keywords: Alkalinity, total; Ammonium; Antarctic; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Cell density, standard error; Chlorophyll a; Community composition and diversity; Containers and aquaria (20-1000 L or 〈 1 m**2); Date; Duration, number of days; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Irradiance; Laboratory experiment; Light attenuation, vertical; Nanoflagellates, heterotrophic; Nanophytoplankton; Nitrogen oxide; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Picophytoplankton; Polar; Position; Prokaryotes; Prydz_Bay_OA; Replicate; Salinity; Silicate; Species; Temperature, water; Treatment; Type
    Type: Dataset
    Format: text/tab-separated-values, 53927 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: Primary production in the Southern Ocean is dominated by diatom-rich phytoplankton assemblages, whose individual physiological characteristics and community composition are strongly shaped by the environment, yet knowledge on how diatoms allocate cellular energy in response to ocean acidification (OA) is limited. Understanding such changes in allocation is integral to determining the nutritional quality of diatoms and the subsequent impacts on the trophic transfer of energy and nutrients. Using synchrotron-based Fourier transform infrared microspectroscopy, we analysed the macromolecular content of selected individual diatom taxa from a natural Antarctic phytoplankton community exposed to a gradient of fCO2 levels (288–1263 µatm). Strong species-specific differences in macromolecular partitioning were observed under OA. Large taxa showed preferential energy allocation towards proteins, while smaller taxa increased both lipid and protein stores at high fCO2. If these changes are representative of future Antarctic diatom physiology, we may expect a shift away from lipid-rich large diatoms towards a community dominated by smaller taxa, but with higher lipid and protein stores than their present-day contemporaries, a response that could have cascading effects on food web dynamics in the Antarctic marine ecosystem.
    Keywords: Alkalinity, total; Antarctic; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell biovolume; Coast and continental shelf; Community composition and diversity; Compounds; Containers and aquaria (20-1000 L or 〈 1 m**2); Davis_Station_Antarctica; Entire community; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Laboratory experiment; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Peak area; Pelagos; pH; Phosphorus, reactive soluble; Polar; Salinity; Sample code/label; Silicate; Species; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 98002 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...