GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-27
    Keywords: Comment; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Event label; HU87-033-009; Labrador Sea; Lead; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, error; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, error; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, error; Mass; PC; Piston corer; Sample code/label; V23; V23-14; V28; V28-82; Vema
    Type: Dataset
    Format: text/tab-separated-values, 1222 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-27
    Keywords: Comment; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Event label; Grains, counted/analyzed; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, error; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, error; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, error; PC; Piston corer; Sample code/label; V23; V23-14; V28; V28-82; Vema
    Type: Dataset
    Format: text/tab-separated-values, 334 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gwiazda, Roberto H; Hemming, Sidney R; Broecker, Wallace S (1996): Tracking the sources of icebergs with lead isotopes: The provenance of ice-rafted debris in Heinrich layer 2. Paleoceanography, 11(1), 77-93, https://doi.org/10.1029/95PA03135
    Publication Date: 2023-05-12
    Description: The provenance of ice-rafted debris (IRD) deposited in the North Atlantic before, during, and after Heinrich event 2 has been determined through measuring the lead isotopic composition of single feldspar grains and multiple-grain composites from the larger than 150-µm size fraction, from cores from the eastern and western North Atlantic and from the Labrador Sea. Single-grain analyses are used to identify the specific continental sources of the IRD, whereas composite samples are used to assess the relative IRD contributions from different sources. All single grains from Heinrich layer 2 (H 2) as well as H 2 composites plot along a correlation line on a 207Pb/204Pb versus 206Pb/204Pb diagram characteristic of the Churchill province of the Canadian shield. This is yet another strong piece of evidence that this Heinrich event was dominated by a massive iceberg discharge of the Laurentide ice sheet lobe located over Hudson Bay. In contrast, single grains from the ambient glacial sediment (above and below H 2) have multiple sources: many of them also lie along the correlation line with H 2 grains, but many others have Pb signatures consistent with derivation from the Grenville province and the Appalachian range in North America and possibly from Scandinavia and Greenland. Composites from the ambient sediment generally lie well to the right of the H 2 reference line in agreement with the results of the single-grain analyses. The evidence provided by lead isotopes regarding the dominant role played by the Hudson Bay lobe of the Laurentide ice sheet in the development of the Heinrich events lends support to the binge/purge model advanced by MacAyeal [1993a, b] that invokes trapping of geothermal heat by the base of the icecap and subsequent basal melting as the mechanism that triggered the Heinrich events.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: High-resolution bathymetry collected with an autonomous underwater vehicle (AUV) along the flanks of three ridges of the accretionary prism offshore southwestern (SW) Taiwan revealed more than 650 elongated depressions in water depths ranging from 1155 to 1420 m. The depressions are between 12 and 129 m long, 5 to 70 m wide, and up 9 m deep at their center and shallowing downslope to about 1-m depth. Due to their shape in downslope cross section, they are termed comet-shaped depressions (CSD). The CSD occur in patches of more than 100 with densities of 53 to 98 CSD/km2. In addition, seven topographic mounds were mapped and interpreted as pingos, which remotely operate vehicle (ROV) observations and sampling show to be covered with authigenic carbonate. These features overlie areas where multichannel seismic reflection (MCS) profiles show bottom simulating reflectors (BSR) and dipping strata extending from below the BSR to near the seafloor. We consider comet-shaped depression, a new type of pockmark, forms on a sloping seafloor where fluids expulsion occurred. We also suggest that the two types of distinctive geomorphic features are attributed to fluid venting which occurs at different rates, with the mounds developing slowly over time, but the CSD forming in discrete events perhaps associated with large earthquakes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...