GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 19 (1971), S. 775-779 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 21 (1973), S. 246-251 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 10 (1971), S. 1103-1103 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 10 (1971), S. 47-68 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The helical stability of a variety of DNA samples, ranging in base composition from 0 to 72 mole-% GC, has been studied by heat denaturation at neutral pH in increasing concentrations of LiCl, NaCl, KCl, CsCl, Li2SO4, and K2SO4. The variation of melting temperature with average base composition, dTm/dXGC, was found to decrease drastically in the concentrated salt media, e.g., from 41°C in 0.006M LiCl to 29°C in 3.2M LiCl, and from 39°C in 0.003M Li2SO4 to 18°C in 1.6M Li2SO4. At the same time, the thermal transition is much more cooperative in the concentrated salt solutions than at low ionic strength. Indeed, at limiting salt concentrations, the transition breadth seems to reach a minimum value irrespective of the compositional heterogeneity of the DNA samples. Attempts to correlate the observed decrease of dTm/dXGC with predicted changes in the enthalpy of melting, deduced from a simple theoretical treatment, experimental data on the binding of counterions and water to DNA, and experimental data on thermal denaturation, were unsuccessful. However, the strongly reduced composition dependence of the melting temperature can be understood in terms of a destabilizing effect of the concentrated salt media on GC-base pairs. It is suggested, though not proven, that the destabilization involves the displacement of water molecules from the DNA helix.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: When DNA's of differing GC:AT base ratios, e.g. synthetic poly dAT, T4 DNA, calf thymus DNA, E. coli DNA, and M. Iysodeiklicus DNA, are heat-denatured at, neutral pH in increasing concentrations of Na2SO4 or Cs2SO4 as supporting electrolytes, the variation of melting temperature with average base composition, dTm/dXG C, changes from 45°C (in 0.002M Na) to 11°C (in 4.5M Na) and from 42°C (in 0.002M Cs) to 3°C (in 4.5M Cs). The decrease of dTm/dXG C is a monotonic function of decreasing water activity in the salt, solutions. We interpret this decreased composition dependence of the thermal stability of the various DNA's as being due to a destabilization of the GC base pairs relative to the AT base pairs by the concentrated salt media. A simple quantitative treatment shows that k = sG C/sA T decreases from a value of 4.14 (in 0.01.M Na) to 1.86 (in 3 M Na) and from 4.18 (in 0.01 M Cs) to 1.42 (in 3 M Cs). SA T is the equilibrium constant for the formation of a hydrogen-bonded AT base pair from a pair of unbonded bases at, the junction between a helical region and a denatured region and sG C is the like constant for the formation of a GC base pair. These results corroborate our previous findings of a strongly reduced composition dependence of the negative logarithm of the methylmercurie hydroxide concentration necessary to produce 50% denaturation when the helix-coil transition of DNA is studied in concentrated Cs2SO4 (ultracentrifugation) instead of in dilute Na2SO4 (ultraviolet spectrophotometry).
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 5 (1967), S. 847-861 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: When increasing concentrations of methylmercuric hydroxide are added to a Cs2SO4 solution of native DNA, the buoyant density of DNA is unaltered until a critical concentration is reached above which there is a cooperative transition to denatured DNA which now binds so much CH3HgOH that it becomes very dense and nonbuoyant. As increasing concentrations of methylmercuric hydroxide are added to a Cs2So4 solution of denatured DNA, the buoyant density gradually increases, indicating a gradual increase in the amount of methylmercury cation bound. The denatured DNA methylmercury complex becomes nonbuoyant at the same concentration of methylmercuric hydroxide as does the native DNA. These results support our previous interpretation that CH3HgOH reacts with the imino NH bonds of thymine and guanine in nucleic acids. The reaction occurs more or less independently at the different binding sites for denatured DNA, but it occurs cooperatively with simultaneous denaturation for native DNA. The nature of the transition of denatured DNA to the nonbuoyant state is not known, but it is probably due to an abrupt decrease in the degree of hydration of the DNA when its density and hydrophobic character are sufficiently increased by the binding of the methylmercury cation. Direct measurements of the amount of methylmercury bound by DNA, as observed by preparative ultracentrifugation, confirm approximately the buoyant density results as to the amount of methylmercury bound. The possibility of using methylmercuric hydroxide as a reagent for the separation of complementary strands, depending on then thymine of their thymine plus guanine content, is discussed.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Precision density measurements were performed at 25°C on Na-DNA-Na2SO4 mixtures in the presence of either 0.005 m cacodylic acid buffer (pH 6.8) or in the presence of 0.1 m NaOH (pH 12.3). From measurements executed under equilibrium dialysis conditions, the so-called “density increments” (∂ρ/∂c2)μ0 for native (pH 6.8), heat-denatured (pH 6.8), and alkali-denatured (pH 12.6) Na-DNA were evaluated as a function of Na2SO4 concentration. (∂ρ/∂c2)μ0 for native DNA was found to decrease almost linearly with ionic strength I1/2 of the supporting electrolyte. The density increment for Na-DNA at pH 12.6, on the other hand, increases in more or less linear fashion with I1/2. (∂ρ/∂c2)μ0 for heat-denatured DNA at pH 6.8 is not affected very much by increasing salt strength. From density measurements performed on the Na-DNA-Na2SO4 mixtures at fixed concentrations of diffusible components, the partial specific volumes ν2° of native (pH 6.8), heat-denatured (pH 6.8), and alkali-denatured (pH 12.6) Na-DNA were determined as a function of Na2SO4 concentration. All ν2° values, irrespective of the secondary structure of the DNA, increase with increasing salt concentration although the increase for heat denatured DNA (pH 6.8) is barely noticeable. ν2° of both native and heat-denatured DNA (pH 6.8) extrapolates to a value of 0.50o ml/g at vanishing salt concentration; ν2° of DNA in 0.1 m NaOH, on the other hand, assumes the value 0.2o ml/g.Distribution coefficients of diffusible components, expressed in terms of preferential water and salt interaction, were evaluated from the (∂ρ/∂c2)μ0 data, solvent densities, and partial specific volumes of all solution components. All interaction parameters depend strongly on salt concentration and on the conformation of DNA. From data collected and from information available in the literature it is concluded that Na2SO4, for instance, displaces water of hydration from native DNA much more readily with increasing salt concentration than does NaCl. The solvation properties of the denatured forms of Na-DNA are rather complex but appear to be in harmony with whatever information can be gathered from the literature.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 17 (1978), S. 605-616 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effects of increasing concentartions of methylmercuric hydroxide (CH3HgOH) on the rate of sedimentation, S0, and intrinsic viscosity, [η], of T7 DNA have been studied at 20°C in 0.005, 0.05, and 0.5M Na2SO4, respectively, whereby each salt solvent conatined, in addition, 0.005M sodium borate, pH 9.18, as a buffer. Both S0 and [η] are independent of organomercurial concentration as long as DNA remains native. Denaturation, brought about by the complexing of CH3HgOH with the polymer, produces large changes in S0 as wll as [η]. The sedimentation coefficient increases strongly with increasing oragnomercurial concentration once strand separation has occured. Experimental difficulties prevented measuring of [η] in the posttransition region. The data on S0 have been used, in combination with available information on the so-called density increment (∂ρ/∂c2)0μ, to obtain information on the frictional properties of single-stranded and methylmercurated T7 DNA. The frictional coefficient, defined as f′2 = M2(∂p/∂c2)0μ/S0ηNA, where M2 is the molecular wieght of T7 DNA, c2 is the concentration of DNA in g/ml of solution, ηr the realtive viscosity of the salt solvents, and NA is Avogadro's number, was evaluated for all three salt media as a function of organomercurial concentration. f′2 of native T7 DNA was found not to be sensitive to changes in ionic strngth; but f′2 of single-stranded and methylmercurated T7 DNA varied strongly with salt concentration. Since f′2 of single-stranded T7 DNA was barely affected by organomercurial concentration at a given ionic strength, it is concluded that the dramatic variations of S0 with pM (pM ≡ -log[CH3HgOH]) observed in the posttransition zone reflect only changes in the thermodynamic interactions (“preferential interactions”) existing between DNA and the vatious other solution components, but not changes in the coil dimensions of the polymer.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...