GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water 27 (1989), S. 0 
    ISSN: 1745-6584
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The geometry and inclination of carbonate-platform slopes are typically described as the result of the sediment texture, components, and grain size occurring in the slope. Three carbonate slopes from the Holocene of the Tongue of the Ocean (Bahamas) and three slopes from an upper Miocene carbonate platform in SE Spain are investigated to identify the factors controlling dip angles. Although platforms differ in size and elevation with regard to the surrounding basin, both locations present slopes with linear profiles and steep angles over 358. The slope facies in both locations are very similar, with the matrix and some bioclasts presenting microfabrics that evidence microbial activity during deposition. These include (1) clotted micrite patches locally connecting bioclasts or infilling primary pores, (2) porostromate structures in the micrite, (3) dense micritic masses, (4) binding structures, (5) micritic crusts, and (6) peloidal textures. The Holocene and Miocene depositional geometries and facies distribution are the response to various sedimentary processes including rockfalls, gravity flows, and in situ carbonate production. Extensive microbial binding is identified as the controlling factor for early stabilization of the slope, which in combination with subsequent rapid cementation produces and maintains the steep slope angles. Consequently, microbial-induced stabilization of modern and Neogene slopes is as significant as in Paleozoic and Triassic examples.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...