GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Geo-marine letters 15 (1995), S. 99-105 
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Sedimentologic and stratigraphic investigations on four cores collected close to the front of the Barbados accretionary prism provided information about the Quaternary depositional processes and sediment fluxes in the region. The morphology of the prism is marked by N—Soriented anticlinal ridges separated by troughs. The deposits are hemipelagic on top of the ridges and in the abyssal plain, with a mean global flux of 1.35–1.40 g cm−2 10−3 yr. The carbonate flux decreases from the prism to the abyssal plain (0.49 and 0.3 g cm−2 10−3 yr, respectively). Terrigenous material is provided by distal turbiditic plumes. It decreases slightly from the abyssal plain to the prism (1.06 and 0.9 g cm−2 10−3 yr, respectively). During cold climatic stages, it is up to 1.4 g cm−2 10−3 yr. The global flux is much higher (7.1 g cm−2 10−3 yr) in the interridge troughs, which act as sediment traps for distal turbidity currents.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1157
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Data obtained from mineralogical and geochemical analyses of piston and gravity cores, recovered from an area off Lisbon (Portugal) to the Alboran Sea (Mediterranean), serve as a basis for better understanding the past 18,000 years of hydrological exchanges at Gibraltar. Tracers used in this study are smectite, kaolinite, Ta, Th, La. One of the primary sources of particles both into and out of the Mediterranean is the Guadalquivir River. These particles are transported back into the Atlantic in the Mediterranean outflow water, and deposited along the Iberian slope. No evidence for reversal of this outflow current was found in those cores, since 18,000 years B.P.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-07
    Description: The Mediterranean outflow water (MOW) paleocirculation during the last 50,000 years has been inferred from the grain-size distribution of contourite beds in core MD99-2341 from the Gulf of Cadiz (Southern Iberian Margin–Atlantic Ocean). Three main contourite facies are described. Their vertical succession defines two contourite sequences that reveal past variations of the MOW bottom-current velocity. A comparison of contourite sequences and the planktonic δ18O record of core MD99-2341 with the δ18O record from Greenland Ice Core GISP2 show a close correlation of sea-surface water conditions and deep-sea contouritic sedimentation in the Gulf of Cadiz with Northern Hemisphere climate variability on millennial timescales. A high MOW velocity prevailed during Dansgaard-Oeschger stadials, Heinrich events and the Younger Dryas cold climatic interval. The MOW velocity was comparatively low during the warm Dansgaard-Oeschger interstadials, Bølling-Allerød and the Early Holocene. Rapid sea-level fluctuations on the order of 35 m during Marine Oxygen Isotope Stage 3 are considered to have exerted limiting controls on the MOW volume transport and thus positively modulated the MOW behaviour during the last 50 kyr.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-02-10
    Description: Deep marine currents are strongly influenced by climatic changes. They also deposit, rework, and sort sediment, and can generate kilometer-scale sedimentary bodies (drifts). These drifts are made of thoroughly bioturbated, stacked sedimentary sequences called contourites [Gonthier et al., 1984]. As a consequence, change in the direction or intensity of currents can be recorded in the sediments
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-22
    Description: A bstract :  New high-quality high-resolution seismic data along the western slope of the Great Bahama Bank reveals a present-day channel–levee complex developed in a pure carbonate setting. This complex grew over two buried complexes separated by erosion surfaces, suggesting both the continuity of downslope gravity-driven processes along this carbonate slope, and channel migration through avulsion, processes similar to what happens along siliciclastic slopes. Complex morphology and geometry are similar to analogs described in siliciclastic systems, but the size of the presented carbonate complex is smaller by a factor of ten. Integrating high-resolution seismic and core studies shows that this complex was built by the stacking of gravity-flow deposits, including turbidites. It presently is inactive and buried by deposits from hemipelagic fallout or low-energy density processes channeled by the gully network; Recent sediments are reworked by along-slope bottom currents dominated by internal tides. The discovery of these channel–levee complexes has implications both on the conceptual models describing the behavior of carbonate slope systems and on hydrocarbon exploration by enhancing the reservoir-bearing potential of carbonate slopes.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-01
    Description: New high-quality multibeam and seismic data image the western slope of the Great Bahama Bank and the adjacent floor of the Straits of Florida. The extensive survey reveals several unexpected large- and small-scale morphologies. These include bypass areas, channel-levee-lobe systems, gullied slopes, and products of slope instabilities at various scales, including long slump scars at the lower slope and mass transport complexes that extend ∼30 km into the adjacent basin floor. The toe of the slope is irregularly covered with deep-water carbonate mounds. The abundance of the individual morphological features varies from north to south. From 26°00′N to 25°20′N, the slope is dissected by numerous deep canyons that abruptly end southward, where the slope is characterized by a smooth lower portion and small regularly spaced furrows in its upper part. Further south, two long (25–50 km) scars document instability at the lower slope. One of these scars is the source area of a large mass transport complex. In addition to this large-scale feature, several types of gravity-induced sedimentary processes are revealed. Most of the morphologies and inferred processes of this carbonate system are similar to those observed in siliciclastic systems, including mass transport complexes, gravity currents initiated by density cascading, and overspilling channeled turbidity currents. For the first time, a clear asymmetric channel-levee system has been identified along the slope, suggesting similitude in sorting processes between carbonate and siliciclastic systems and enhancing the reservoir-bearing potential of carbonate slopes. Notable differences with siliciclastic systems include: the lack of connection with the shallow and emerged part of the system (i.e., bank top), and the small size of the sedimentary system.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-09-01
    Description: New high-quality multibeam data presented here depict the northern slope of the Little Bahama Bank (Bahamas). The survey reveals the details of large- and small-scale morphologies that look like siliciclastic systems at a smaller scale, including large-scale slope failure scars and canyon morphologies, previously interpreted as gullies and creep lobes. The slope exhibits mature turbidite systems built by mass-flow events and turbidity currents. The sediment transport processes are probably more complex than expected. Slope failures show sinuous head scarps with various sizes, and most of the scars are filled with recent sediment. Canyons have amphitheater-shaped heads resulting from coalescing slump scars, and are floored by terraces that are interpreted as slump deposits. Canyons rapidly open on a short channel and a depositional fan-shaped lobe. The entire system extends for ~40 km. The development of these small turbidite systems, similar to siliciclastic systems, is due to the lack of cementation related to alongshore current energy forcing the transport of fine particles and flow differentiation. Detailed analyses of bathymetric data show that the canyon and failure-scar morphology and geometry vary following a west-east trend along the bank slope. The changing parameters are canyon length and width, depth of incision, and canyon and channel sinuosity. Accordingly, failure scars are larger and deeper eastward. These observations are consistent with a westward tectonic tilt of the bank during the Cenozoic.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...