GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-23
    Description: This study provides an inventory of the recent benthic macrofaunal communities in the entire Baltic Sea. The analyses of soft-bottom benthic invertebrate community data based on over 7000 locations in the Baltic Sea suggested the existence of 10 major communities based on species abundances and 17 communities based on species biomasses, respectively. The low-saline northern Baltic, characterized by silty sediments, is dominated by Monoporeia affinis, Marenzelleria spp ., and Macoma balthica . Hydrobiidae , Pygospio elegans , and Cerastoderma glaucum dominate the community in sandy habitats off the Estonian west coast and in the southeastern and southern Baltic Sea. Deep parts of the Gulf of Finland and central Baltic Sea often experience hypoxia, and when oxygen levels in these regions recover, Bylgides sarsi was the first species to colonize. The southwestern Baltic Sea, with high salinity, has higher macrofaunal diversity compared with the northern parts. To spatially interpolate the distribution of the major communities, we used the Random Forest method. Substrate data, bathymetric maps, and modelled hydrographical fields were used as predictors. Model predictions were in good agreement with observations, quantified by Cohen's of 0.90 for the abundance and 0.89 in the wet weight-based model. Misclassifications were mainly associated with uncommon classes in regions with high spatial variability. Our analysis provides a detailed baseline map of the distribution of benthic communities in the Baltic Sea to be used both in science and management.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-24
    Description: The expedition AL570 with the RV Alkor was carried out within the framework of the interdisciplinary DAM MGF-OSTSEE Project “Potential effects of closure for bottom fishing in the marine protected areas (MPAs) of the western Baltic Sea – baseline observations” funded by the Ministry of Education and Research (BMBF). Within MGF-OSTSEE a consortium of scientists from various institutions investigates how benthic ecosystems in Natura 2000 areas within the German exclusive economic zone develop after the exclusion of bottom trawling. Major goals of the project are i. the initial assessment of the environmental state and its variability in- and outside the three Natura 2000 areas Fehmarnbelt, Oder- and Rönnebank under the ongoing pressure of bottom trawling and ii. the general assessment of the effect of bottom trawling on benthic communities and benthic biogeochemical functioning as well as their development after fishery exclusion. The cruise AL570 concludes a series of three previous expeditions EMB238 (2020) and EMB267/268 (2021) and aimed to survey all components of the benthic food web including prokaryotes, protozoans, meiofauna and macrofauna, as well as sediment properties and biogeochemical processes in selected working areas in- and outside of the MPA. The working program comprised 156 station activities of various gears for biological and biogeochemical sampling of sediments. Solute exchange between the sediment and the water column was investigated using Landers and a novel underwater vehicle the Deep-Sea Rover (DSR) Panta Rhei. Investigations in the water column, seafloor observation and deployments of a dredge supplemented the station work. Due to stormy weather in situ solute fluxe measurements were not performed at the Rönnebank.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-20
    Description: Marine benthic ecosystems are difficult to monitor and assess, which is in contrast to modern ecosystem-based management requiring detailed information at all important ecological and anthropogenic impact levels. Ecosystem management needs to ensure a sustainable exploitation of marine resources as well as the protection of sensitive habitats, taking account of potential multiple-use conflicts and impacts over large spatial scales. The urgent need for large-scale spatial data on benthic species and communities resulted in an increasing application of distribution modelling (DM). The use of DM techniques enables to employ full spatial coverage data of environmental variables to predict benthic spatial distribution patterns. Especially, statistical DMs have opened new possibilities for ecosystem management applications, since they are straightforward and the outputs are easy to interpret and communicate. Mechanistic modelling techniques, targeting the fundamental niche of species, and Bayesian belief networks are the most promising to further improve DM performance in the marine realm. There are many actual and potential management applications of DMs in the marine benthic environment, these are (i) early warning systems for species invasion and pest control, (ii) to assess distribution probabilities of species to be protected, (iii) uses in monitoring design and spatial management frameworks (e.g. MPA designations), and (iv) establishing long-term ecosystem management measures (accounting for future climate-driven changes in the ecosystem). It is important to acknowledge also the limitations associated with DM applications in a marine management context as well as considering new areas for future DM developments. The knowledge of explanatory variables, for example, setting the basis for DM, will continue to be further developed: this includes both the abiotic (natural and anthropogenic) and the more pressing biotic (e.g. species interactions) aspects of the ecosystem. While the response variables on the other hand are often focused on species presence and some work undertaken on species abundances, it is equally important to consider, e.g. biological traits or benthic ecosystem functions in DM applications. Tools such as DMs are suitable to forecast the possible effects of climate change on benthic species distribution patterns and hence could help to steer present-day ecosystem management.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-12
    Description: Trawl-fishing is broadly considered to be one of the most destructive anthropogenic activities toward benthic ecosystems. In this study, we examine the effects of bottom-contact fishing by otter trawls on the geochemistry and macrofauna in sandy silt sediment in an area of the Baltic Sea where clear spatial patterns in trawling activity were previously identified by acoustic mapping. We calibrated an early diagenetic model to biogeochemical data from various coring locations. Fitting measured mercury profiles allowed for the determination of the sediment mixing and burial velocity. For all sites, independent of the trawl mark density, good fits were obtained by applying the model with the same organic matter loading and parameter values, while iron fluxes scaled linearly with the burial velocity. A sensitivity analysis revealed that the fitted sulfate reduction rate, solid sulfur contents, ammonium concentration, and both the isotopic composition and concentration of dissolved inorganic carbon provided reliable constraints for the total mineralization rate, which exhibited a narrow range of variability (around ±20 % from the mean) across the sites. Also, the trawling intensity did not significantly correlate with total organic carbon contents in surficial sediment, indicating limited loss of organic matter due to trawling. The fits to the reactive iron, acid volatile sulfur, chromium(II) reducible sulfur contents, and porewater composition demonstrate that sediment burial and mixing primarily determine the redox stratification. The mixing depth did not correlate with trawling intensity and is more likely the result of bioturbation, as the analyzed macrofaunal taxonomy and density showed a high potential for sediment reworking. The extraordinarily long-lived Arctica islandica bivalve dominated the infaunal biomass, despite the expectation that trawling leads to the succession from longer-lived to shorter-lived and bigger to smaller macrofauna. Our results further suggest that a clear geochemical footprint of bottom-trawling may not develop in sediments actively reworked by tenacious macrofauna.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...