GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Changes in GABA receptor (GABAAR) gene expression are detected in animal models of epilepsy, anxiety and in post-mortem schizophrenic brain, suggesting a role for GABAAR regulation in neurological disorders. Persistent (48 h) exposure of brain neurons in culture to GABA results in down-regulation of GABAAR number and uncoupling of GABA and benzodiazepine (BZD) binding sites. Given the central role of GABAARs in fast inhibitory synaptic transmission, GABAAR down-regulation and uncoupling are potentially important mechanisms of regulating neuronal excitability, yet the molecular mechanisms remain unknown. In this report we show that treatment of brain neurons in culture with tetrodotoxin, glutamate receptor antagonists, or depolarization with 25 mm K+ fails to alter GABAAR number or coupling. Changes in neuronal activity or membrane potential are therefore not sufficient to induce either GABAAR down-regulation or uncoupling. Nifedipine, a voltage-gated Ca2+ channel (VGCC) blocker, inhibits both GABA-induced increases in [Ca2+]i and GABAAR down-regulation, suggesting that VGCC activation is required for GABAAR down-regulation. Depolarization with 25 mm K+ produces a sustained increase in intracellular [Ca2+] without causing GABAAR down-regulation, suggesting that activation of VGCCs is not sufficient to produce GABAAR down-regulation. In contrast to GABAAR down-regulation, nifedipine and 25 mm K+ fail to inhibit GABA-induced uncoupling, demonstrating that GABA-induced GABAAR down-regulation and uncoupling are mediated by independent molecular events. Therefore, GABAAR activation initiates at least two distinct signal transduction pathways, one of which involves elevation of intracellular [Ca2+] through VGCCs.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 74 (2000), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Benzodiazepines (BZDs), barbiturates, ethanol, and general anesthetics potentiate the action of γ-aminobutyric acid (GABA) at the type A GABA receptor (GABAAR) and have profound effects on mood, arousal, and susceptibility to seizures. GABAAR number and subunit mRNA levels change in animal models of epilepsy and anxiety and following exposure to GABAAR agonists and positive modulators, but the mechanism of receptor down-regulation remains unknown. Persistent exposure (48 h) of brain neurons in primary culture to GABA results in a 30% decrease in the levels of mRNA encoding the α1, β2S, and γ1 GABAAR subunit isoforms, which form a receptor enhanced by nonselective BZDs. Down-regulation of α1 mRNA (t1/2 = 8 h) precedes down-regulation of receptor number (t1/2 = 25 h), suggesting that GABA-induced GABAAR down-regulation is a consequence of decreased mRNA levels. The apparent half-life of the α1 mRNA in the presence of α-amanitin (9 h) is consistent with the time course of α1 mRNA down-regulation. Moreover, the stability of the α1, β2S, and γ1 subunit mRNAs is not altered by chronic GABA exposure. The results demonstrate that GABAAR subunit mRNA down-regulation is not a consequence of accelerated mRNA degradation and argue that GABA-induced GABAAR down-regulation is due to inhibition of transcription.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 463 (1986), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6903
    Keywords: GABA/Benzodiazepine Receptor ; regulation ; GABA ; benzodiazepine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...