GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Chitin-Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (429 pages)
    Edition: 1st ed.
    ISBN: 9783031012297
    Series Statement: Engineering Materials and Processes Series
    DDC: 573.774
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Polysaccharides: Chitin and Chitosan -- 1.1 Introduction -- 1.1.1 Polysaccharides in General -- 1.1.2 Storage Polysaccharides -- 1.1.3 Structural Polysaccharides -- 1.1.4 Polysaccharides from Marine Source -- 1.1.5 Mucosubstances -- 1.1.6 Polysaccharides as a Human Nutrition Source -- 1.1.7 Chitosan Market -- 1.1.8 Summary -- References -- 2 Preparation of Chitin and Chitosan -- 2.1 Chitin and Chitosan -- 2.2 Chitosan Preparation Methods -- 2.2.1 Introduction -- 2.2.2 Extraction of Chitin -- 2.3 Preparation of Chitosan -- 2.4 Chitin and Chitosan Properties -- 2.5 Summary -- References -- 3 Chitosan Characterization -- 3.1 Introduction -- 3.1.1 Molecular Weight -- 3.1.2 Degree of Deacetylation (DD) and Dissociation Constant of Chitosan -- 3.1.3 Swelling Behavior and Solubility -- 3.1.4 Percentage of Moisture (Loss on Drying) -- 3.1.5 Percentage of Ash -- 3.2 Morphology of the Chitosan Using SEM, EDS X-Ray Analysis, and TEM -- 3.2.1 Scanning Electron Microscopy (SEM) Analysis -- 3.2.2 Energy-Dispersive Spectroscopic (EDS) X-Ray Microanalysis -- 3.2.3 Transmission Electron Micrograph (TEM) -- 3.2.4 Thermogravimetric Analysis (TGA) of Chitosan -- 3.2.5 Determination of Surface Area and Surface Charge of Chitosan -- 3.2.6 Moisture Sorption onto Chitosan -- 3.2.7 Mechanical Properties of Chitin and Chitosan -- 3.2.8 Diffuse Reflective UV-Vis (DRUV) Spectroscopy -- 3.2.9 X-Ray Photoelectron Spectroscopy (XPS) Analysis -- 3.2.10 Electron Spin Resonance (ESR) Spectroscopy -- 3.3 Summary -- References -- 4 The Structural Difference Between Chitin and Chitosan -- 4.1 Molecular Structure of Chitin -- 4.2 Chitin and Chitosan: Structural Differences from Spectroscopic Analysis -- 4.2.1 X-Ray Diffraction (XRD) Pattern of Chitin and Chitosan -- 4.2.2 Differential Scanning Calorimetry (DSC). , 4.2.3 Fourier Transform Infrared (FTIR) Spectroscopy -- 4.2.4 Nuclear Magnetic Resonance (NMR) Spectroscopy -- 4.2.5 Raman Spectroscopy -- 4.3 Summary -- References -- 5 Preparation and Application of Chitosan Derivatives -- 5.1 Physicochemical Crosslinking of Chitosan -- 5.2 Radiation-Induced Crosslinking -- 5.3 Water-Soluble Chitosan Derivatives -- 5.4 Overall Synthesis Process for Water-Soluble Chitosan Derivatives -- 5.4.1 Alkylation of Chitosan -- 5.4.2 Sulfated Chitosan -- 5.4.3 Phosphorylation of Chitosan -- 5.4.4 Quarternized Chitosan -- 5.5 Preparation of Chitosan-Based Hydrogel -- 5.5.1 Introduction and Background -- 5.5.2 Preparation of Chitosan Hydrogel -- 5.5.3 Chitosan-Based "Smart" Hydrogels -- 5.6 Chitosan Nanoparticles -- 5.7 Chitosan Nanofibers -- 5.8 Chitosan Coated on to Inorganic Materials for the Preparation of Adsorbent Bead -- 5.9 Summary -- References -- 6 Adsorption-Heavy Metals Removal -- 6.1 Introduction -- 6.2 Adsorption Methods -- 6.2.1 Experimental Procedure for Equilibrium Uptake of Metal Ions on Adsorbent from Aqueous Solution -- 6.2.2 Adsorption Controlling Parameters -- 6.2.3 Effect of Contact Time and Sorbate Concentration in Solution on Adsorption Process -- 6.2.4 Equilibrium Considerations -- 6.2.5 Single Component Monolayer Models -- 6.2.6 Single Component Multilayer Models -- 6.3 Error Analysis for Isotherm Studies -- 6.4 Thermodynamic Parameters -- 6.4.1 Pseudo-First-Order Kinetics and Equilibrium Adsorption Isotherm -- 6.4.2 Pseudo-Second-Order Kinetic Model -- 6.4.3 The Elovich Equation -- 6.4.4 Intraparticle Diffusion -- 6.5 Thermodynamic Parameters -- 6.5.1 Polanyi's Potential Theory -- 6.5.2 Activation Energy -- 6.6 Dynamic Adsorption -- 6.6.1 Fundamentals of Dynamic Adsorption -- 6.6.2 LUB Equilibrium Method -- 6.7 Sorption Mechanisms -- 6.8 Case Study I. , 6.8.1 Sorption Mechanism of Arsenic on to Chitosan-Iron Bead -- 6.8.2 Summary -- 6.9 Case Study 2 -- 6.9.1 Sorption Mechanism of Uranium on to Chitosan-Coated Perlite (CP) Beads -- 6.9.2 Results and Discussion -- 6.9.3 Summary -- References -- 7 Chitosan-Based Sensors -- 7.1 Introduction -- 7.2 Fabrication of Chitosan Membranes and Films -- 7.3 Chitosan-Based Sensors -- 7.3.1 Glucose Biosensor -- 7.3.2 Chitosan-Based Sensor by Layer-by-Layer (LBL) Method -- 7.3.3 Chitosan Nanocomposite-Based Sensor -- 7.4 Summary -- References -- 8 Application of Chitosan in the Medical and Biomedical Field -- 8.1 Skin Wound -- 8.2 Application of Biopolymer in Wound Healing -- 8.3 Application of Chitosan in Medical and Biomedical Fields -- 8.3.1 Wound Dressing and Healing -- 8.3.2 Scaffolds for Bone Tissue Engineering -- 8.3.3 Antimicrobial Application of Chitosan -- 8.3.4 Anticancer and Antitumor Activity of Chitosan and Its Derivatives -- 8.4 Chitosan-Based Medical Isotope Separation -- 8.4.1 Separation of 99mTc from 99Mo Using Chitosan-Based Adsorbent -- 8.5 Summary -- References -- 9 Application of Chitosan in Textiles -- 9.1 Chitosan Use in Textiles -- 9.2 Summary -- References -- 10 Chitosan for the Agricultural Sector and Food Industry -- 10.1 Introduction -- 10.2 Application of Chitosan in Agriculture and Agro-based Industry -- 10.3 Summary -- References -- 11 Applications of Chitosan in Fuel Cells -- 11.1 Proton Exchange Membrane Fuel Cells -- 11.2 Proton Exchange Membrane (PEM) Fuel Cell -- 11.2.1 Membrane -- 11.2.2 Membrane/Electrode Assembly -- 11.2.3 Efficiency, Power, and Energy of Polymer Electrolyte Membrane Fuel Cell -- 11.2.4 The Polymer Electrolyte Membrane Fuel Cell Stack -- 11.2.5 Water Management in a Fuel Cell -- 11.3 Fuel -- 11.4 Direct Methanol Fuel Cell (DMFC) -- 11.5 Application of Chitosan in Fuel Cells -- 11.6 Summary -- References. , 12 Chitosan Uses in Cosmetics -- 12.1 Introduction -- 12.2 Target Organs for Cosmetics Products -- 12.2.1 Skin -- 12.2.2 Hair -- 12.2.3 Teeth -- 12.3 Chitin and Chitosan and Their Derivatives in the Cosmetics -- 12.3.1 Synthesis of Chitosan Derivatives -- 12.3.2 Skincare Cosmetics -- 12.3.3 Hair Care Cosmetics -- 12.3.4 Teeth -- 12.4 Summary -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 32 (1993), S. 2390-2399 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry research 30 (1991), S. 2205-2211 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of chemical & engineering data 37 (1992), S. 259-261 
    ISSN: 1520-5134
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The penicillin-binding protein (PBP) 1b of Escherichia coli catalyses the assembly of lipid-transported N-acetyl glucosaminyl-β-1,4-N-acetylmuramoyl-l-alanyl-γ-d-glutamyl-(l)-meso-diaminopimelyl-(l)-d-alanyl-d-alanine disaccharide pentapeptide units into polymeric peptidoglycan. These units are phosphodiester linked, at C1 of muramic acid, to a C55 undecaprenyl carrier. PBP1b has been purified in the form of His tag (M46-N844) PBP1bγ. This derivative provides the host cell in which it is produced with a functional wall peptidoglycan. His tag (M46-N844) PBP1bγ possesses an amino-terminal hydrophobic segment, which serves as transmembrane spanner of the native PBP. This segment is linked, via an ≅ 100-amino-acid insert, to a D198-G435 glycosyl transferase module that possesses the five motifs characteristic of the PBPs of class A. In in vitro assays, the glycosyl transferase of the PBP catalyses the synthesis of linear glycan chains from the lipid carrier with an efficiency of ≅ 39 000 M−1 s−1. Glu-233, of motif 1, is central to the catalysed reaction. It is proposed that the Glu-233 γ-COOH donates its proton to the oxygen atom of the scissile phosphoester bond of the lipid carrier, leading to the formation of an oxocarbonium cation, which then undergoes attack by the 4-OH group of a nucleophile N-acetylglucosamine. Asp-234 of motif 1 or Glu-290 of motif 3 could be involved in the stabilization of the oxocarbonium cation and the activation of the 4-OH group of the N-acetylglucosamine. In turn, Tyr-310 of motif 4 is an important component of the amino acid sequence-folding information. The glycosyl transferase module of PBP1b, the lysozymes and the lytic transglycosylase Slt70 have much the same catalytic machinery. They might be members of the same superfamily. The glycosyl transferase module is linked, via a short junction site, to the amino end of a Q447-N844 acyl transferase module, which possesses the catalytic centre-defining motifs of the penicilloyl serine transferases superfamily. In in vitro assays with the lipid precursor and in the presence of penicillin at concentrations sufficient to derivatize the active-site serine 510 of the acyl transferase, the rate of glycan chain synthesis is unmodified, showing that the functioning of the glycosyl transferase is acyl transferase independent. In the absence of penicillin, the products of the Ser-510-assisted double-proton shuttle are glycan strands substituted by cross-linked tetrapeptide–pentapeptide and tetrapeptide–tetrapeptide dimers and uncross-linked pentapeptide and tetrapeptide monomers. The acyl transferase of the PBP also catalyses aminolysis and hydrolysis of properly structured thiolesters, but it lacks activity on d-alanyl-d-alanine-terminated peptides. This substrate specificity suggests that carbonyl donor activity requires the attachment of the pentapeptides to the glycan chains made by the glycosyl transferase, and it implies that one and the same PBP molecule catalyses transglycosylation and peptide cross-linking in a sequential manner. Attempts to produce truncated forms of the PBP lead to the conclusion that the multimodular polypeptide chain behaves as an integrated folding entity during PBP1b biogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Atrial septal defect is one of the most common forms of congenital heart malformation. We identified a new locus linked with atrial septal defect on chromosome 14q12 in a large family with dominantly inherited atrial septal defect. The underlying mutation is a missense substitution, I820N, in ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...